Some applications of Modular Forms

- $\mathbb{H}:=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}$, the Upper Half Plane
- $\operatorname{SL}(2, \mathbb{Z})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{M}_{2 \times 2}(\mathbb{Z}) \right\rvert\, a d-b c=1\right\}$
- $\Gamma=\operatorname{PSL}(2, \mathbb{Z})=\operatorname{SL}(2, \mathbb{Z}) /\{ \pm \mathrm{id}\}$, The Modular group.
- 「 acts on \mathbb{H} by linear fractional transformations;

$$
\mathbb{H} \ni \tau \mapsto \gamma \tau=\frac{a \tau+b}{c \tau+d} \in \mathbb{H} \quad\left(\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma\right)
$$

The fundamental domain $\Gamma \backslash \mathbb{H}$ and the tiling of \mathbb{H}

\mathbb{H}

Quadratic forms

- For $\mathbb{Z} \ni D \equiv 0,1(\bmod 4)$, let \mathcal{Q}_{D} be the set of integral binary quadratic forms of discriminant D that are positive definite if $D<0$.

$$
\mathcal{Q}_{D}:=\left\{Q=[A, B, C] \mid A, B, C \in \mathbb{Z}, B^{2}-4 A C=D\right\}
$$

where $[A, B, C]:=Q(x, y)=A x^{2}+B x y+C y^{2}$

- $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ acts also on \mathcal{Q}_{D}.
- For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ and $Q \in \mathcal{Q}_{D}$

$$
(\gamma Q)(x, y):=Q(d x-b y,-c x+a y)
$$

- This action is compatible with the action of Γ on the roots τ of $Q(\tau, 1)=0$ by linear fractional transformation.

Quadratic forms

- The set of classes $\Gamma \backslash \mathcal{Q}_{D}$ is finite.
- $\left|\Gamma \backslash \mathcal{Q}_{D}\right|:=h(D)$ is called the class number.
- The classes of primitive forms $((A, B, C)=1)$ form an abelian group, called the class group
- $D=-191 h(D)=13$
$\Gamma \backslash \mathcal{Q}_{D}=\{[1,1,48],[2,1,242],[2,-1,24],[3,1,16]$, [3, -1, 16], [4, 1, 12], [4, -1, 12], [6, 1, 8], [6, -1, 8], $[5,3,10],[5,-3,10],[6,5,9],[6,-5,9]\}$
- $D=28, h(D)=2$
$\Gamma \backslash \mathcal{Q}_{D}=\{[1,4,-3],[-1,4,3]\}$

Quadratic forms

- For $Q \in \mathcal{Q}_{D}$, the isotropy group $\Gamma_{Q}=\{\gamma \in \Gamma ; \gamma Q=Q\}$ consists of all transformations

$$
\gamma= \pm\left(\begin{array}{cc}
\frac{t+B u}{2} & C u \\
-A u & \frac{t-B u}{2}
\end{array}\right)
$$

where (t, u) are positive integral solutions of the Pell equation $t^{2}-D u^{2}=4$.

- If $D<0$, then $\Gamma_{Q}=\{\mathrm{id}\}$ unless $D=-3,-4$, in which case it has order 3 or 2 , respectively.
- If $D>0$, then $\Gamma_{Q}=<g_{Q}>$ is infinite cyclic with generator $\gamma=g_{Q}$ coming from minimal $t, u>0$.

$D<0$

- For a given quadratic form $Q=[A, B, C]$, we associate a complex number $\tau_{Q}=\frac{-B+\sqrt{D}}{2 A} \in \mathbb{H}$.
- Given two equivalent quadratic forms, $[A, B, C]=Q \sim Q^{\prime}=[a, b, c] \in \mathcal{Q}_{D}$, we can get two equivalent complex numbers, $\tau_{Q}=\frac{-B+\sqrt{D}}{2 A}$ and $\tau_{Q^{\prime}}=\frac{-b+\sqrt{D}}{2 a} \in \mathbb{H}$.

$D<0$

- For a given quadratic form $Q=[A, B, C]$, we associate a complex number $\tau_{Q}=\frac{-B+\sqrt{D}}{2 A} \in \mathbb{H}$.
- Given two equivalent quadratic forms, $[A, B, C]=Q \sim Q^{\prime}=[a, b, c] \in \mathcal{Q}_{D}$, we can get two equivalent complex numbers, $\tau_{Q}=\frac{-B+\sqrt{D}}{2 A}$ and $\tau_{Q^{\prime}}=\frac{-b+\sqrt{D}}{2 a} \in \mathbb{H}$.
$\tau_{Q} \sim \tau_{Q^{\prime}}$ in the sense that $\tau_{Q}=\gamma \tau_{Q^{\prime}}$ for some $\gamma \in \Gamma$.

$D<0$

- For a given quadratic form $Q=[A, B, C]$, we associate a complex number $\tau_{Q}=\frac{-B+\sqrt{D}}{2 A} \in \mathbb{H}$.
- Given two equivalent quadratic forms, $[A, B, C]=Q \sim Q^{\prime}=[a, b, c] \in \mathcal{Q}_{D}$, we can get two equivalent complex numbers, $\tau_{Q}=\frac{-B+\sqrt{D}}{2 A}$ and $\tau_{Q^{\prime}}=\frac{-b+\sqrt{D}}{2 a} \in \mathbb{H}$. $\tau_{Q} \sim \tau_{Q^{\prime}}$ in the sense that $\tau_{Q}=\gamma \tau_{Q^{\prime}}$ for some $\gamma \in \Gamma$.
- This way each $[Q] \in \Gamma \backslash \mathcal{Q}_{D}$ corresponds to a CM point $\tau_{Q} \in \Gamma \backslash \mathbb{H}$.

$D<0$

- For a given quadratic form $Q=[A, B, C]$, we associate a complex number $\tau_{Q}=\frac{-B+\sqrt{D}}{2 A} \in \mathbb{H}$.
- Given two equivalent quadratic forms,
$[A, B, C]=Q \sim Q^{\prime}=[a, b, c] \in \mathcal{Q}_{D}$,
we can get two equivalent complex numbers,
$\tau_{Q}=\frac{-B+\sqrt{D}}{2 A}$ and $\tau_{Q^{\prime}}=\frac{-b+\sqrt{D}}{2 a} \in \mathbb{H}$.
$\tau_{Q} \sim \tau_{Q^{\prime}}$ in the sense that $\tau_{Q}=\gamma \tau_{Q^{\prime}}$ for some $\gamma \in \Gamma$.
- This way each $[Q] \in \Gamma \backslash \mathcal{Q}_{D}$ corresponds to a CM point $\tau_{Q} \in \Gamma \backslash \mathbb{H}$.
- $D=-4, h(D)=1, \Gamma \backslash \mathcal{Q}_{D}=\{Q=[1,0,1]\}, \tau_{Q}=\sqrt{-1}$.

What can we say about h_{D} ?
How many $\tau_{Q} \in \Gamma \backslash \mathbb{H}$ are there?

What can we say about h_{D} ?
How many $\tau_{Q} \in \Gamma \backslash \mathbb{H}$ are there?

- Gauss' conjecture: $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$

What can we say about h_{D} ?

How many $\tau_{Q} \in \Gamma \backslash \mathbb{H}$ are there?

- Gauss' conjecture: $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$
- Hecke (1918): If Generalized Riemann Hypothesis is true then $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$

What can we say about h_{D} ?

How many $\tau_{Q} \in \Gamma \backslash \mathbb{H}$ are there?

- Gauss' conjecture: $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$
- Hecke (1918): If Generalized Riemann Hypothesis is true then $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$
- Deuring (1933): If Riemann Hypothesis is false then $h(D) \geq 2$ for all $-D$ sufficiently large

What can we say about h_{D} ?

How many $\tau_{Q} \in \Gamma \backslash \mathbb{H}$ are there?

- Gauss' conjecture: $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$
- Hecke (1918): If Generalized Riemann Hypothesis is true then $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$
- Deuring (1933): If Riemann Hypothesis is false then $h(D) \geq 2$ for all $-D$ sufficiently large
- Mordell, Heilbronn(1934): If GRH is false then $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$
- Theorem: $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$

What can we say about h_{D} ?

How many $\tau_{Q} \in \Gamma \backslash \mathbb{H}$ are there?

- Gauss' conjecture: $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$
- Hecke (1918): If Generalized Riemann Hypothesis is true then $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$
- Deuring (1933): If Riemann Hypothesis is false then $h(D) \geq 2$ for all $-D$ sufficiently large
- Mordell, Heilbronn(1934): If GRH is false then $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$
- Theorem: $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$
- Theorem: (Siegel) For every $\epsilon>0$, there exists a constant c which cannot be effectively computed such that $h(D)>c|D|^{1 / 2-\epsilon}$
- Theorem: (Siegel) For every $\epsilon>0$, there exists a constant c which cannot be effectively computed such that $h(D)>c|D|^{1 / 2-\epsilon}$
- Gauss class number one problem for $D<0$:
- Theorem: (Siegel) For every $\epsilon>0$, there exists a constant c which cannot be effectively computed such that $h(D)>c|D|^{1 / 2-\epsilon}$
- Gauss class number one problem for $D<0$:
- Theorem (Heilbronn-Linfoot(1934)) There are at most ten negative fundamental discirminants $D<0$ for which $h(D)=$ $1 ; D=-3,-4,-7,-8,-11,-19,-43,-67,-163$, ?
- Theorem: (Siegel) For every $\epsilon>0$, there exists a constant c which cannot be effectively computed such that $h(D)>c|D|^{1 / 2-\epsilon}$
- Gauss class number one problem for $D<0$:
- Theorem (Heilbronn-Linfoot(1934)) There are at most ten negative fundamental discirminants $D<0$ for which $h(D)=$ 1; $D=-3,-4,-7,-8,-11,-19,-43,-67,-163$, ?
- Theorem (Baker(1966),Stark(1967), Heegner (1952))

$$
h(D)=1 \Longleftrightarrow D=-3,-4,-7,-8,-11,-19,-43,-67,-163 .
$$

- Theorem: (Siegel) For every $\epsilon>0$, there exists a constant c which cannot be effectively computed such that $h(D)>c|D|^{1 / 2-\epsilon}$
- Gauss class number one problem for $D<0$:
- Theorem (Heilbronn-Linfoot(1934)) There are at most ten negative fundamental discirminants $D<0$ for which $h(D)=$ $1 ; D=-3,-4,-7,-8,-11,-19,-43,-67,-163$, ?
- Theorem (Baker(1966),Stark(1967), Heegner (1952))

$$
h(D)=1 \Longleftrightarrow D=-3,-4,-7,-8,-11,-19,-43,-67,-163 .
$$

- Theorem (Goldfeld(1976), Gross-Zagier (1983)) For every $\epsilon>0$, there exists an effectively computable constant c such that $h(D)>c(\log |D|)^{1-\epsilon}$.

$$
D=-51071
$$

$$
h=273
$$

$$
D=-1299743
$$

$$
h=945
$$

$$
D=-573259391 \quad h=34125 .
$$

Theorem (W.Duke)
For $D<0$ be a fundamental discriminant, let $\Lambda_{D}=\Gamma \backslash \mathcal{Q}_{D}$. Then the set Λ_{D} becomes uniformly distributed in $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ as $D \rightarrow \infty$. That is, given $\phi \in C_{c}^{\infty}\left(\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}\right)$ we have

$$
\frac{1}{h(D)} \sum_{\tau_{Q} \in \Lambda_{D}} \phi\left(\tau_{Q}\right) \rightarrow \int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}} \phi(\tau) d \mu(\tau)
$$

where $d \mu(\tau)$ is the $\mathrm{SL}(2, \mathbb{R})$-invariant probability measure on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$

What if $D>0$?

The root τ_{Q} of $Q(\tau, 1)=0$ for $Q \in \mathcal{Q}_{D}$ is a real quadratic irrationality.
For $D>0$, non-square, to each $Q=[A, B, C] \in \mathcal{Q}_{D}$, we can associate a geodesic $S_{Q}=A|\tau|^{2}+B \operatorname{Re}(\tau)+C \in \mathbb{H}$ and a closed geodesic $C_{Q} \in \Gamma \backslash \mathbb{H}$.

Geodesic S_{Q}

For $D>0$, let t, u be the smallest positive integers for which $t^{2}-D u^{2}=4$ and $\varepsilon_{D}=\frac{1}{2}(t+u \sqrt{D})$.
For any $Q \in \mathcal{Q}_{D}$ we have

$$
\int_{C_{Q}} 1 d s(\tau)=\int_{C_{Q}} 1 \frac{d \tau}{Q(\tau, 1)}=\log \varepsilon_{D}
$$

where $d s(\tau)$ is the hyperbolic arc length.

$$
\sum_{Q \in \Gamma \backslash \mathcal{Q}_{D}} \int_{C_{Q}} 1 d s(\tau)=h_{D} \log \varepsilon_{D}
$$

$D=12$

$$
D=28 \quad h=2
$$

$$
D=4 \times 787 \quad h=1
$$

What can we say about $h(D)$, the number of geodesics?
Class number one problem for real quadratic fields:

$$
h(D)=1 \text { for infinitely many } D>0
$$

What can we say about $h(D)$, the number of geodesics?
Class number one problem for real quadratic fields:

$$
h(D)=1 \text { for infinitely many } D>0
$$

This is completely open.

What can we say about the total length of the geodesics?

What can we say about the total length of the geodesics?

$$
h_{D} \log \varepsilon_{D} ?
$$

Theorem (Siegel)
For every $\epsilon>0$, there exists a constant c which cannot be effectively computed such that $h(D) \log \varepsilon_{D}>c D^{1 / 2-\epsilon}$.

Theorem (Duke)

For $D>0$ be a fundamental discriminant, let $\Lambda_{D}=\Gamma \backslash \mathcal{Q}_{D}$ be the set of closed geodesics. Then the set Λ_{D} becomes uniformly distributed in $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ as $D \rightarrow \infty$.
That is, given $\phi \in C_{c}^{\infty}\left(\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}\right)$ we have

$$
\frac{1}{h(D) \log \varepsilon_{D}} \sum_{C_{Q} \in \Lambda_{D}} \int_{C_{Q}} \phi(\tau) d s(\tau) \rightarrow \int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}} \phi(\tau) d \mu(\tau)
$$

Linnik, Einsiedler, Lindenstrauss, Michel, Venkatesh...

How does W. Duke prove his theorems?

He proved that " Weyl sums" are small.

If $u: \mathbb{H} \longrightarrow \mathbb{C}$ is a Maass cusp form

$$
\begin{gathered}
\frac{1}{h(D)} \sum_{\tau_{Q} \in \Lambda_{D}} \frac{1}{w_{Q}} u\left(\tau_{Q}\right) \rightarrow 0,0>D \rightarrow-\infty \\
\frac{1}{h(D) \log \varepsilon_{D}} \sum_{C_{Q} \in \Lambda_{D}} \int_{C_{Q}} u(\tau) d s(\tau) \rightarrow 0,0<D \rightarrow \infty
\end{gathered}
$$

H. Weyl's theorem on uniform distribution in \mathbb{R} / \mathbb{Z}.

We say a sequence of points $\left\{x_{n}\right\}_{n=0}^{\infty}$ is uniformly distributed in $[0,1]$ if for all $0 \leq a \leq b \leq 1$,

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{n \leq N \mid a \leq x_{n} \leq b\right\}}{N}=b-a .
$$

H. Weyl's theorem on uniform distribution in \mathbb{R} / \mathbb{Z}.

We say a sequence of points $\left\{x_{n}\right\}_{n=0}^{\infty}$ is uniformly distributed in $[0,1]$ if for all $0 \leq a \leq b \leq 1$,

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{n \leq N \mid a \leq x_{n} \leq b\right\}}{N}=b-a
$$

Note this says that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)=\int_{0}^{1} f(x) d x
$$

holds with $f=\chi_{[a, b]}$, the characteristic function of $[a, b]$.

Theorem (H.Weyl)

The sequence $\left\{x_{n}\right\}$ is uniformly distributed in \mathbb{R} / \mathbb{Z} if and only if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e\left(m x_{n}\right)=\int_{0}^{1} e(m x) d x=0, \quad \forall m \in \mathbb{Z} \backslash\{0\}
$$

To prove

$$
\frac{1}{h(D)} \sum_{\tau_{Q} \in \Lambda_{D}} \frac{1}{w_{Q}} u\left(\tau_{Q}\right) \rightarrow 0,0>D \rightarrow-\infty
$$

one needs to give a good bound for $\operatorname{Tr}_{D}(u):=\sum_{\tau_{Q} \in \Lambda_{D}} \frac{1}{w_{Q}} u\left(\tau_{Q}\right)$ which beats the Siegel bound for $h(D)$.

$$
h(D)>c|D|^{1 / 2-\epsilon}, \text { if } D<0
$$

How can one prove a good bound for the Weyl sum $\operatorname{Tr}_{D}(u)$?
(1) Relate $\operatorname{Tr}_{D}(u)$ to the D-th Fourier coefficients of a half integral weight Maass form ũ using results of Maass, Katok-Sarnak.
(2) Use deep theorems of H. Iwaniec (extended by W. Duke) which give good bounds for the Fourier coefficients of half-integral weight forms.

What can we say about the values of modular functions at CM points?
Let

$$
j(\tau)=\frac{1}{q}+744+196884 q+21493760 q^{2}+\cdots
$$

be the modular invariant for $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$.

What do we know about the individual values of j at CM points, the Singular moduli

$$
j\left(\tau_{Q}\right)=?
$$

or their sum

$$
\sum_{\tau_{Q} \in \Gamma \backslash \mathcal{Q}_{D}} j\left(\tau_{Q}\right)=?
$$

Values of modular functions at complex quadratic irrationalities

Theory of complex multiplication says

Values of modular functions at complex quadratic irrationalities

Theory of complex multiplication says

- The singular modulus $j\left(\tau_{Q}\right)$ depends only on the Γ-equivalence class of Q

Values of modular functions at complex quadratic irrationalities

Theory of complex multiplication says

- The singular modulus $j\left(\tau_{Q}\right)$ depends only on the Γ-equivalence class of Q
- Each of the $h(D)=\left|\Gamma \backslash \mathcal{Q}_{D}\right|$ values $j\left(\tau_{Q}\right)$ is an algebraic integer of exact degree $h(D)$

Values of modular functions at complex quadratic irrationalities

Theory of complex multiplication says

- The singular modulus $j\left(\tau_{Q}\right)$ depends only on the Γ-equivalence class of Q
- Each of the $h(D)=\left|\Gamma \backslash \mathcal{Q}_{D}\right|$ values $j\left(\tau_{Q}\right)$ is an algebraic integer of exact degree $h(D)$
- They form a full set of Galois conjugates so that the sum of these values is the algebraic trace.
- For $D<0$, we define the (modified) trace of singular moduli as

$$
\operatorname{Tr}_{D}\left(j_{1}\right):=\sum_{Q \in \Gamma \backslash \mathcal{Q}_{D}} \frac{1}{\left|\Gamma_{Q}\right|} j_{1}\left(\tau_{Q}\right)
$$

where $j_{1}(\tau)=j(\tau)-744$

- For $D<0$, we define the (modified) trace of singular moduli as

$$
\operatorname{Tr}_{D}\left(j_{1}\right):=\sum_{Q \in \Gamma \backslash \mathcal{Q}_{D}} \frac{1}{\left|\Gamma_{Q}\right|} j_{1}\left(\tau_{Q}\right)
$$

where $j_{1}(\tau)=j(\tau)-744$

- In general for $f \in \mathcal{M}_{0}^{!}(\Gamma)$, define

$$
\operatorname{Tr}_{D}(f):=\sum_{Q \in \Gamma \backslash \mathcal{Q}_{D}} \frac{1}{\left|\Gamma_{Q}\right|} f\left(\tau_{Q}\right)
$$

- For $D<0$, we define the (modified) trace of singular moduli as

$$
\operatorname{Tr}_{D}\left(j_{1}\right):=\sum_{Q \in \Gamma \backslash \mathcal{Q}_{D}} \frac{1}{\left|\Gamma_{Q}\right|} j_{1}\left(\tau_{Q}\right)
$$

where $j_{1}(\tau)=j(\tau)-744$

- In general for $f \in \mathcal{M}_{0}^{!}(\Gamma)$, define

$$
\begin{gathered}
\operatorname{Tr}_{D}(f):=\sum_{Q \in \Gamma \backslash \mathcal{Q}_{D}} \frac{1}{\left|\Gamma_{Q}\right|} f\left(\tau_{Q}\right) \\
\operatorname{Tr}_{D}(1)=\sum_{Q \in \Gamma \backslash \mathcal{Q}_{D}} \frac{1}{\left|\Gamma_{Q}\right|}=H(|D|), \text { Hurwitz class number } \\
H(0):=\frac{-1}{12}
\end{gathered}
$$

Traces of modular functions

m	$\mathrm{Tr}_{-3}\left(j_{m}\right)$	$\mathrm{T} r_{-4}\left(j_{m}\right)$	$\mathrm{T} r_{-7}\left(j_{m}\right)$
0	$1 / 3$	$1 / 2$	1
1	-248	492	-4119
2	53256	287244	16572393
3	-12288992	153540528	-67515202851

$$
\begin{gathered}
j_{0}=1 \\
j_{1}=j-744 \\
j_{2}=j^{2}-1488 j+159768 \\
j_{3}=j^{3}-2232 j^{2}+1069956 j-36866976
\end{gathered}
$$

Here the functions j_{m}, for $m \geq 0$ are of the form

$$
\begin{equation*}
j_{m}(\tau)=q^{-m}+\sum_{n \geq 1} c_{m}(n) q^{n}, \quad\left(q=e(\tau)=e^{2 \pi i \tau}\right) \tag{0.1}
\end{equation*}
$$

They form a basis for the space $\mathbb{C}[j]$ of all weakly holomorphic modular forms of weight 0 and they have a generating function that goes back to Faber :

$$
\begin{equation*}
2 \pi i \sum_{m \geq 0} j_{m}(z) q^{m}=\frac{j^{\prime}(\tau)}{j(z)-j(\tau)} \tag{0.2}
\end{equation*}
$$

Note that this formal series converges when $\operatorname{Im}(\tau)>\operatorname{Im}(z)$.

m	$\mathrm{Tr}_{-3}\left(j_{m}\right)$	$\mathrm{Tr}_{-4}\left(j_{m}\right)$	$\mathrm{Tr}_{-7}\left(j_{m}\right)$
0	$1 / 3$	$1 / 2$	1
1	-248	492	-4119
2	53256	287244	16572393
3	-12288992	153540528	-67515202851

Let g_{1} be the function given in terms of the usual modular forms E_{4} and Δ and θ by

$$
g_{1}(\tau)=\theta\left(\tau+\frac{1}{2}\right) \frac{E_{4}(4 \tau)}{\Delta(4 \tau)^{1 / 4}}
$$

Then

$$
g_{1}(\tau)=q^{-1}-2+248 q^{3}-492 q^{4}+4119 q^{7}+\cdots
$$

We have the following beautiful theorem of Zagier. Theorem (D. Zagier)
Let

$$
g(\tau)=q^{-1}+\sum_{0 \leq n \equiv 0,3(4)} \operatorname{Tr}_{-n}\left(j_{1}\right) q^{n}
$$

Then $g \in M_{3 / 2}^{!}$.

What if $D>0$?

- The root τ_{Q} of $Q(\tau, 1)=0$ for $Q \in \mathcal{Q}_{D}$ is a real quadratic irrationality.

What if $D>0$?

- The root τ_{Q} of $Q(\tau, 1)=0$ for $Q \in \mathcal{Q}_{D}$ is a real quadratic irrationality.
- Can we extend the definiton of "the value" of $j\left(\tau_{Q}\right)$, to these real quadratic irrationalities?

What if $D>0$?

- The root τ_{Q} of $Q(\tau, 1)=0$ for $Q \in \mathcal{Q}_{D}$ is a real quadratic irrationality.
- Can we extend the definiton of "the value" of $j\left(\tau_{Q}\right)$, to these real quadratic irrationalities?
- Recall for $D>0$, non-square, to each $Q=[A, B, C] \in \mathcal{Q}_{D}$, we have associated a geodesic
$S_{Q}=A|\tau|^{2}+B \operatorname{Re}(\tau)+C \in \mathbb{H}$ and a closed geodesic $C_{Q} \in \Gamma \backslash \mathbb{H}$.

"Values" of modular functions at real quadratic irrationalities
- 2008, M. Kaneko and W. Duke, I., A. Toth independently defined real quadratic analogues of singular moduli through the cycle integrals of the j-function.

"Values" of modular functions at real quadratic irrationalities

- 2008, M. Kaneko and W. Duke, I., A. Toth independently defined real quadratic analogues of singular moduli through the cycle integrals of the j-function.

$$
" j\left(\tau_{Q}\right) ":=\int_{z_{0}}^{g_{Q} z_{0}} j_{1}(z) \frac{d z}{A z^{2}+B z+C}=\int_{C_{Q}} j_{1}(z) \frac{d z}{Q(z, 1)}
$$

$$
\operatorname{Tr}_{D}\left(j_{1}\right):=\sum_{Q \in \Gamma \backslash \mathcal{Q}_{D}} j_{1}\left(\tau_{Q}\right)
$$

Numerical approximations to the first few traces for $D>0$.

m	$\mathrm{T} r_{5}\left(j_{m}\right)$	$\mathrm{Tr} r_{8}\left(j_{m}\right)$	$\mathrm{Tr} r_{12}\left(j_{m}\right)$	$\mathrm{T} r_{13}\left(j_{m}\right)$
0	.30634	.56109	.83840	.76060
1	-11.54175	-19.13749	-28.67973	-23.40950
2	-25.85662	-50.69769	-74.46436	-69.09778
3	-32.00316	-55.08485	-86.06819	-79.31283

Numerical approximations to the first few traces for $D>0$.

m	$\mathrm{T} r_{5}\left(j_{m}\right)$	$\mathrm{T} r_{8}\left(j_{m}\right)$	$\mathrm{T} r_{12}\left(j_{m}\right)$	$\mathrm{T} r_{13}\left(j_{m}\right)$
0	.30634	.56109	.83840	.76060
1	-11.54175	-19.13749	-28.67973	-23.40950
2	-25.85662	-50.69769	-74.46436	-69.09778
3	-32.00316	-55.08485	-86.06819	-79.31283

m	$\mathrm{Tr}_{-3}\left(j_{m}\right)$	$\mathrm{Tr} r_{-4}\left(j_{m}\right)$	$\mathrm{T} r_{-7}\left(j_{m}\right)$
0	$1 / 3$	$1 / 2$	1
1	-248	492	-4119
2	53256	287244	16572393
3	-12288992	153540528	-67515202851

- The theory of these real quadratic analogues is still in its infancy.
- The theory of these real quadratic analogues is still in its infancy.
- Direct connections with arithmetic have not been found.
- The theory of these real quadratic analogues is still in its infancy.
- Direct connections with arithmetic have not been found.
- However, some connections with modular forms have.

Theorem (W. Duke, I., A. Toth and J. Bruinier, J. Funke, I.) The function

$$
h(\tau)=\sum_{D \geq 0} \operatorname{Tr}_{D}\left(j_{1}\right) q^{D}+g^{*}(\tau)
$$

has weight $1 / 2$ for $\Gamma_{0}(4)$, i.e. it transforms like $\theta(\tau)$.
The non holomorphic correction term $g^{*}(\tau)$ satisfy the differential equation

$$
2 i y^{1 / 2} \frac{d}{d \bar{\tau}} g^{*}(\tau)=\overline{g(\tau)}
$$

where $g(\tau)$ is Zagier's function. Moreover h is harmonic.

$$
\Delta_{1 / 2}(h)=0
$$

What can we say about the individual "values"

 $j\left(\tau_{Q}\right)$ for $D>0$?Kaneko studied the numerical values of $j\left(\tau_{Q}\right)$ and made several remarkable observations.

What can we say about the individual "values"

$$
j\left(\tau_{Q}\right) \text { for } D>0 ?
$$

Kaneko studied the numerical values of $j\left(\tau_{Q}\right)$ and made several remarkable observations. For a general quadratic irrationality, among his many observations, we note the following boundedness conjecture.

What can we say about the individual "values"

$$
j\left(\tau_{Q}\right) \text { for } D>0 \text { ? }
$$

Kaneko studied the numerical values of $j\left(\tau_{Q}\right)$ and made several remarkable observations. For a general quadratic irrationality, among his many observations, we note the following boundedness conjecture.

Conjecture (M. Kaneko)
Let $w \in \mathbb{Q}(\sqrt{D})$ be a real quadratic irrationality. Then

$$
\operatorname{Re}\left(j^{\text {nor }}(w)\right) \in[706.324 \ldots, 744] \text { and } \operatorname{Im}\left(j^{\text {nor }}(w)\right) \in(-1,1)
$$

What can we say about the individual "values"

 $j\left(\tau_{Q}\right)$ for $D>0$?Kaneko studied the numerical values of $j\left(\tau_{Q}\right)$ and made several remarkable observations. For a general quadratic irrationality, among his many observations, we note the following boundedness conjecture.

Conjecture (M. Kaneko)
Let $w \in \mathbb{Q}(\sqrt{D})$ be a real quadratic irrationality. Then

$$
\operatorname{Re}\left(j^{n o r}(w)\right) \in[706.324 \ldots, 744] \text { and } \operatorname{Im}\left(j^{\text {nor }}(w)\right) \in(-1,1)
$$

where

$$
706.324 \ldots=j^{n o r}\left(\frac{(1+\sqrt{5})}{2}\right), \text { and } j^{\text {nor }}(w):=\frac{\sqrt{D}}{2 \log \varepsilon} j(w)
$$

Every $x \in \mathbb{R}$ has a unique '-' continued fraction expansion $x=\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ with $b_{i} \in \mathbb{Z}, \quad b_{i} \geq 2$ for $i \geq 1$

$$
x=\left(b_{0}, b_{1}, b_{2}, \ldots\right)=b_{0}-\frac{1}{b_{1}-\frac{1}{b_{2}-\frac{1}{\ddots}}}
$$

and a unique ' + ' continued fraction expansion
$x=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ with $a_{i} \in \mathbb{Z}$ and $a_{i} \geq 1$ for $i \geq 1$.

$$
x=\left[a_{0}, a_{1}, a_{2}, \ldots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}
$$

w is a quadratic irrationality if and only if its '-' continued fraction expansion (or equivalently, its '+' continued fraction) is eventually periodic.
For $N \geq 2$, we have

$$
w=\frac{N+\sqrt{N^{2}-4}}{2}=(N, N, N \ldots)=(\bar{N})
$$

For the golden ratio we have

$$
\begin{aligned}
& w=\frac{1+\sqrt{5}}{2}=(2,3,3,3,3 \cdots)=(2, \overline{3}) \\
& w=\frac{1+\sqrt{5}}{2}=[1,1,1, \ldots]=[\overline{1}]=\left[\overline{1}_{2}\right]
\end{aligned}
$$

Theorem (Bengoechea, I.)

Let w be a real quadratic number with purely periodic negative continued fraction $w=\left(b_{1}, \ldots, b_{n}\right)$. Then we have
(1) $\operatorname{Re}\left(j^{\text {jor }}(w)\right) \leq 744$.

C2 For any positive integer $N>2$, the value $j^{\text {nor }}((\bar{N}))$ for the quadratic number $w=(\bar{N})$ is real and

$$
\lim _{N \rightarrow \infty} j^{\text {nor }}((\bar{N}))=744 .
$$

(3) Let $(1+\sqrt{5}) / 2=(2, \overline{3})$ be the golden ratio. If all the partial quotients b_{r} of w satisfy $b_{r}>3 M$ with $M=e^{55}$ then

$$
\operatorname{Re}\left(j^{\text {nor }}(w)\right) \geq j^{\text {nor }}((1+\sqrt{5}) / 2) .
$$

The generating function of $\operatorname{Tr}_{d}\left(j_{m}\right), \quad m=0,1, \ldots$

Let

$$
F_{d}(\tau):=-\sum_{m=0}^{\infty} \operatorname{Tr}_{d}\left(j_{m}\right) q^{m}
$$

Then we have
Theorem (Duke-I-Toth)
For each $d>0$ not a square the function F_{d} is a holomorphic modular integral of weight 2 with a rational period function:

$$
\begin{equation*}
F_{d}(\tau)-\tau^{-2} F_{d}(-1 / \tau)=-\frac{\sqrt{d}}{\pi} \sum_{\substack{c<0<a \\ b^{2}-4 a c=d}}\left(a \tau^{2}+b \tau+c\right)^{-1} \tag{0.3}
\end{equation*}
$$

- Note that the period function has simple poles at certain real quadratic integers of discriminant d.
- This is the analog of a theorem of Borcherds who defined a function F_{d} which has singularities at CM points when $d<0$.
- The appearance of a rational period function is perhaps not too surprising in view of the case $d=0$.

$$
\begin{equation*}
\tau^{-2} E_{2}(-1 / \tau)=E_{2}(\tau)+(2 \pi i \tau)^{-1} \tag{0.4}
\end{equation*}
$$

- We can also define a function $F_{Q}(\tau)$ associated to one class in $[Q] \in \Gamma \backslash \mathcal{Q}_{d}$.

$$
F_{Q}(\tau):=-\sum_{m=0}^{\infty} a_{Q}(m) q^{m}
$$

where

$$
a_{Q}(m):=\sqrt{d} \int_{C_{Q}} j_{m}(z) \frac{d z}{Q(z, 1)}
$$

- $F_{Q}(\tau)$ is again a modular integral with a rational period function.
- $F_{Q}(\tau)$ has an interesting application to topology.

An application to Topology

- Let $V=\left\{(z, w) \in \mathbb{C}^{2}: z^{3}-27 w^{2}=0\right\}$, and $T=V \cap S^{3}$, the trefoil knot.

An application to Topology

- Let $V=\left\{(z, w) \in \mathbb{C}^{2}: z^{3}-27 w^{2}=0\right\}$, and $T=V \cap S^{3}$, the trefoil knot.

- A remarkable fact: The homogeneous space

$$
\mathrm{SL}(2, \mathbb{Z}) \backslash \mathrm{SL}(2, \mathbb{R})
$$

is diffeomorphic to $S^{3}-T$, the complement of the trefoil knot in the 3-sphere.

An application to Topology

$$
E_{2}(\tau)=\frac{1}{2 \pi i} \frac{\Delta^{\prime}(\tau)}{\Delta(\tau)}=1-24 \sum \sigma(n) q^{n}
$$

Dedekind studied the transformation law for the logarithm of

$$
\Delta(\tau)=q \prod_{m \geq 1}\left(1-q^{n}\right)^{24}
$$

An application to Topology

$$
E_{2}(\tau)=\frac{1}{2 \pi i} \frac{\Delta^{\prime}(\tau)}{\Delta(\tau)}=1-24 \sum \sigma(n) q^{n}
$$

Dedekind studied the transformation law for the logarithm of

$$
\Delta(\tau)=q \prod_{m \geq 1}\left(1-q^{n}\right)^{24}
$$

For any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ with $c \neq 0$ we have

$$
\log \Delta(\gamma \tau)-\log \Delta(\tau)=6 \log \left(-(c \tau+d)^{2}\right)+2 \pi i \Phi(\gamma) .
$$

We set $\Phi(\gamma)=0$ if $c=0$.

Here $\Phi(\gamma)$ is the Dedekind Symbol

$$
\Phi(\gamma)=\frac{a+d}{c}-12 \operatorname{sign}(c) \cdot s(a, c)
$$

$s(a, c)$ is the Dedekind sum defined for $\operatorname{gcd}(a, c)=1, c \neq 0$ by

$$
s(a, c)=\sum_{n=1}^{|c|-1}\left(\left(\frac{n}{c}\right)\right)\left(\left(\frac{n a}{c}\right)\right)
$$

$((x))=0$ if $x \in \mathbb{Z}$ and otherwise

$$
((x))=x-\lfloor x\rfloor-1 / 2
$$

- The Rademacher Symbol $\Psi(\gamma)$ is

$$
\Psi(\gamma)=\Phi(\gamma)-3 \operatorname{sign}(c(a+d))
$$

- The Dedekind symbol $\Phi(\gamma)$ is not a conjugacy class invariant but the Rademacher symbol $\Psi(\gamma)$ is.
- The Rademacher Symbol $\Psi(\gamma)$ is

$$
\Psi(\gamma)=\Phi(\gamma)-3 \operatorname{sign}(c(a+d))
$$

- The Dedekind symbol $\Phi(\gamma)$ is not a conjugacy class invariant but the Rademacher symbol $\Psi(\gamma)$ is.
- For γ hyperbolic $\Psi(\gamma)$ is the homogenization of the Dedekind symbol $\Phi(\gamma)$,

$$
\Psi(\gamma)=\lim _{n \rightarrow \infty} \frac{\Phi\left(\gamma^{n}\right)}{n}
$$

- E. Ghys gave the beautiful result that the linking number of a "modular knot κ_{γ} " with the trefoil is given by the Rademacher symbol $\Psi(\gamma)$.
- Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ be a primitive hyperbolic element with an eigenvalue $\epsilon>1$.
- Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ be a primitive hyperbolic element with an eigenvalue $\epsilon>1$.
- Fix a $M \in G=\operatorname{SL}(2, \mathbb{R})$ so that

$$
M^{-1} \gamma M=\left(\begin{array}{cc}
\epsilon & 0 \\
0 & 1 / \epsilon
\end{array}\right)
$$

- Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ be a primitive hyperbolic element with an eigenvalue $\epsilon>1$.
- Fix a $M \in G=\operatorname{SL}(2, \mathbb{R})$ so that

$$
M^{-1} \gamma M=\left(\begin{array}{cc}
\epsilon & 0 \\
0 & 1 / \epsilon
\end{array}\right)
$$

- Consider the 1-parameter subgroup

$$
\varphi(t)=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right)
$$

and the associated flow

$$
\begin{aligned}
G \times \mathbb{R} & \longmapsto G \\
(g, t) & \longmapsto g \varphi(t)
\end{aligned}
$$

- There is an induced flow ϕ^{t} on $\Gamma \backslash G$, called the geodesic flow.
- There is an induced flow ϕ^{t} on $\Gamma \backslash G$, called the geodesic flow.

$$
\phi^{t}:\lceil g \longmapsto\ulcorner g \varphi(t) .
$$

- There is an induced flow ϕ^{t} on $\Gamma \backslash G$, called the geodesic flow.

$$
\phi^{t}:\lceil g \longmapsto\ulcorner g \varphi(t) .
$$

- $\tilde{\gamma}(t)=M \varphi(t)$ is a periodic orbit in $\Gamma \backslash G$ with period $\log \epsilon$. i.e. $\tilde{\gamma}(t+\log \epsilon)=\tilde{\gamma}(t)$ in $\Gamma \backslash G$.
- There is an induced flow ϕ^{t} on $\Gamma \backslash G$, called the geodesic flow.

$$
\phi^{t}:\lceil g \longmapsto\ulcorner g \varphi(t) .
$$

- $\tilde{\gamma}(t)=M \varphi(t)$ is a periodic orbit in $\Gamma \backslash G$ with period $\log \epsilon$. i.e. $\tilde{\gamma}(t+\log \epsilon)=\tilde{\gamma}(t)$ in $\Gamma \backslash G$.
- This orbit depends only on the conjugacy class of γ.
- There is an induced flow ϕ^{t} on $\Gamma \backslash G$, called the geodesic flow.

$$
\phi^{t}:\lceil g \longmapsto\ulcorner g \varphi(t) .
$$

- $\tilde{\gamma}(t)=M \varphi(t)$ is a periodic orbit in $\Gamma \backslash G$ with period $\log \epsilon$. i.e. $\tilde{\gamma}(t+\log \epsilon)=\tilde{\gamma}(t)$ in $\Gamma \backslash G$.
- This orbit depends only on the conjugacy class of γ.
- Periodic orbits of the geodesic flow correspond to conjugacy classes of hyperbolic elements.
- There is an induced flow ϕ^{t} on $\Gamma \backslash G$, called the geodesic flow.
-

$$
\phi^{t}:\lceil g \longmapsto\ulcorner g \varphi(t) .
$$

- $\tilde{\gamma}(t)=M \varphi(t)$ is a periodic orbit in $\Gamma \backslash G$ with period $\log \epsilon$. i.e. $\tilde{\gamma}(t+\log \epsilon)=\tilde{\gamma}(t)$ in $\Gamma \backslash G$.
- This orbit depends only on the conjugacy class of γ.
- Periodic orbits of the geodesic flow correspond to conjugacy classes of hyperbolic elements.
- These orbits are also related to classes of indefinite binary quadratic forms
- Let $Q(X, Y)=A X^{2}+B X Y+C Y^{2}$ be a quadratic forms of discriminant $D=B^{2}-4 A C$,
- t, u are the smallest positive solutions of Pell's equation $t^{2}-D u^{2}=4$, and

$$
\sigma_{Q}=\left(\begin{array}{cc}
\frac{t+B u}{2} & C u \\
-A u & \frac{t-B u}{2}
\end{array}\right) .
$$

- The association $Q \mapsto \sigma_{Q}$ sets up a bijection between elements of the class \mathcal{C} of the quadratic form Q and the conjugacy class of σ_{Q}, which by abuse of notation will also be denoted by \mathcal{C}.

The image of the periodic orbit $\tilde{\gamma}(t)$ in $S^{3}-T$ is a knot, κ_{γ}, called a modular knot.

The image of the periodic orbit $\tilde{\gamma}(t)$ in $S^{3}-T$ is a knot, κ_{γ}, called a modular knot.

$$
4 \square>4 \text { 岛 } \downarrow 4 \equiv>4 \equiv \Rightarrow \text { 三 }
$$

Pictures: "Mathematical Imagery" by Jos Leys

Suppose that two oriented knots K_{1} and K_{2} do not intersect, and project them onto a plane in a generic way. These projections need not be disjoint.

Suppose that two oriented knots K_{1} and K_{2} do not intersect, and project them onto a plane in a generic way. These projections need not be disjoint.

Linking number 1
(Pictures by Jim.belk)

Linking number -1

Theorem (E. Ghys)

The linking number of the modular knot κ_{γ} and the trefoil is given by the Rademacher symbol.

$$
\operatorname{Lk}\left(\kappa_{\gamma}, T\right)=\Psi(\gamma)
$$

The Dedekind Symbol has other representations.

- For $c \neq 0$, let

$$
R(\gamma, z)=6 \log \left(-(c z+d)^{2}\right)+2 \pi i \Phi(\gamma)=\log \Delta(\gamma \tau)-\log \Delta(\tau)
$$

Then

$$
\Phi(\gamma)=\frac{1}{2 \pi} \lim _{y \rightarrow \infty} \operatorname{Im} R(\gamma, i y)
$$

- It also has a representation in terms of the special value of an L - function associated to $E_{2}(z)$.

$$
L(s, a / c)=\sum_{n \geq 1} \sigma(n) e\left(\frac{a}{c} n\right) n^{-s}
$$

- At the end of his paper, Knots and Dynamics, E. Ghys mentions the problem of interpreting the linking number between two modular knots.
- At the end of his paper, Knots and Dynamics, E. Ghys mentions the problem of interpreting the linking number between two modular knots.
- We will look at this problem by giving an appropriate generalization of the Dedekind symbol.
- For an hyperbolic element $\sigma \in \mathcal{C}$ let

$$
a_{\mathcal{C}}(m)=\sqrt{D^{\prime}} \int_{z_{0}}^{\sigma z_{0}} j_{m}(z) \frac{d z}{Q_{\sigma}(z)}
$$

- Define for $\alpha \in \mathbb{Q}$ the Dirichlet series

$$
\begin{equation*}
L_{\mathcal{C}}(s, \alpha)=\sum_{n \geq 1} a_{\mathcal{C}}(n) e(n \alpha) n^{-s} \tag{0.5}
\end{equation*}
$$

- Then $L_{C}(s, a / c)$ converges for $\operatorname{Re}(s)>9 / 4$, has a meromorphic continuation to $s>0$ and is holomorphic at $s=1$.
- We define a new Dedekind symbol, Dedekind symbol associate to the conjugacy class \mathcal{C},

$$
\Phi_{\mathcal{C}}(\gamma):=-\frac{1}{\pi^{2}} \operatorname{Re} L_{\mathcal{C}}\left(1, \frac{a}{c}\right)
$$

Then we have

- Theorem [DIT] $\Phi_{\mathcal{C}}(\gamma)$ is an integer.
- For simplicity we assume $\sigma \in \mathcal{C}_{\sigma}$ is conjugate to its inverse, ie. $\sigma \sim \sigma^{-1}$. Then the modular knot κ_{σ} is null-homologous in $S^{3}-T$. For two such knots κ_{σ} and κ_{γ} we have

Theorem (DIT)
Let

$$
\Psi_{\sigma}(\gamma)=\lim _{n \rightarrow \infty} \frac{\Phi_{\mathcal{C}_{\sigma}}\left(\gamma^{n}\right)}{n}
$$

Then the limit exists and

- For simplicity we assume $\sigma \in \mathcal{C}_{\sigma}$ is conjugate to its inverse, ie. $\sigma \sim \sigma^{-1}$. Then the modular knot κ_{σ} is null-homologous in $S^{3}-T$. For two such knots κ_{σ} and κ_{γ} we have

Theorem (DIT)
Let

$$
\Psi_{\sigma}(\gamma)=\lim _{n \rightarrow \infty} \frac{\Phi_{\mathcal{C}_{\sigma}}\left(\gamma^{n}\right)}{n}
$$

Then the limit exists and

$$
\Psi_{\sigma}(\gamma)=L k\left(\kappa_{\gamma}, \kappa_{\sigma}\right)
$$

THANK YOU!

