Some applications of Modular Forms

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• $\mathbb{H} := \{ \tau \in \mathbb{C} \mid Im(\tau) > 0 \}$, the Upper Half Plane

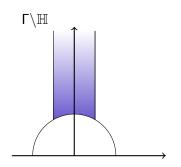
•
$$SL(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{Z}) \mid ad - bc = 1 \right\}$$

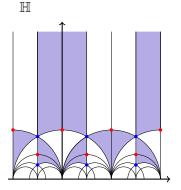
- $\Gamma = PSL(2, \mathbb{Z}) = SL(2, \mathbb{Z})/\{\pm id\}$, The Modular group.
- Γ acts on ℍ by linear fractional transformations;

$$\mathbb{H} \ni \tau \mapsto \gamma \tau = \frac{a\tau + b}{c\tau + d} \in \mathbb{H} \quad \left(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma\right)$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The fundamental domain $\Gamma \backslash \mathbb{H}$ and the tiling of \mathbb{H}





・ロト・日本・日本・日本・日本・日本

Quadratic forms

For Z ∋ D ≡ 0, 1 (mod 4), let Q_D be the set of integral binary quadratic forms of discriminant D that are positive definite if D < 0.

$$\mathcal{Q}_{\mathcal{D}} := \{ \mathcal{Q} = [\mathcal{A}, \mathcal{B}, \mathcal{C}] \mid \mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbb{Z}, \mathcal{B}^2 - 4\mathcal{A}\mathcal{C} = \mathcal{D} \}$$

where $[A, B, C] := Q(x, y) = Ax^2 + Bxy + Cy^2$

• $\Gamma = PSL(2, \mathbb{Z})$ acts also on \mathcal{Q}_D .

• For
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$
 and $Q \in Q_D$

$$(\gamma Q)(x, y) := Q(dx - by, -cx + ay)$$

 This action is compatible with the action of Γ on the roots τ of Q(τ, 1) = 0 by linear fractional transformation.

Quadratic forms

- The set of classes $\Gamma \setminus Q_D$ is finite.
- $|\Gamma \setminus Q_D| := h(D)$ is called the class number.
- The classes of primitive forms ((*A*, *B*, *C*) = 1) form an abelian group, called the class group

(日) (日) (日) (日) (日) (日) (日)

•
$$D = -191 \ h(D) = 13$$

 $\Gamma \setminus Q_D = \{[1, 1, 48], [2, 1, 242], [2, -1, 24], [3, 1, 16], [3, -1, 16], [4, 1, 12], [4, -1, 12], [6, 1, 8], [6, -1, 8], [5, 3, 10], [5, -3, 10], [6, 5, 9], [6, -5, 9]\}$

•
$$D = 28$$
, $h(D) = 2$
 $\Gamma \setminus Q_D = \{ [1, 4, -3], [-1, 4, 3] \}$

Quadratic forms

For *Q* ∈ *Q*_D, the isotropy group Γ_Q = {γ ∈ Γ; γ*Q* = *Q*} consists of all transformations

$$\gamma = \pm \begin{pmatrix} \frac{t+Bu}{2} & Cu\\ -Au & \frac{t-Bu}{2} \end{pmatrix}$$

where (t, u) are positive integral solutions of the Pell equation $t^2 - Du^2 = 4$.

- If D < 0, then Γ_Q = {id} unless D = −3, −4, in which case it has order 3 or 2, respectively.
- If D > 0, then $\Gamma_Q = \langle g_Q \rangle$ is infinite cyclic with generator $\gamma = g_Q$ coming from minimal t, u > 0.

For a given quadratic form Q = [A, B, C], we associate a complex number τ_Q = ^{−B+√D}/_{2A} ∈ ℍ.

(日) (日) (日) (日) (日) (日) (日)

• Given two equivalent quadratic forms, $[A, B, C] = Q \sim Q' = [a, b, c] \in Q_D$,

we can get two equivalent complex numbers, $\tau_Q = \frac{-B + \sqrt{D}}{2A}$ and $\tau_{Q'} = \frac{-b + \sqrt{D}}{2a} \in \mathbb{H}$.

- For a given quadratic form Q = [A, B, C], we associate a complex number τ_Q = ^{−B+√D}/_{2A} ∈ ℍ.
- Given two equivalent quadratic forms, $[A, B, C] = Q \sim Q' = [a, b, c] \in Q_D$,

we can get two equivalent complex numbers, $\tau_Q = \frac{-B + \sqrt{D}}{2A}$ and $\tau_{Q'} = \frac{-b + \sqrt{D}}{2a} \in \mathbb{H}$. $\tau_Q \sim \tau_{Q'}$ in the sense that $\tau_Q = \gamma \tau_{Q'}$ for some $\gamma \in \Gamma$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For a given quadratic form Q = [A, B, C], we associate a complex number τ_Q = ^{−B+√D}/_{2A} ∈ ℍ.
- Given two equivalent quadratic forms, $[A, B, C] = Q \sim Q' = [a, b, c] \in Q_D$,

we can get two equivalent complex numbers, $\tau_Q = \frac{-B + \sqrt{D}}{2A}$ and $\tau_{Q'} = \frac{-b + \sqrt{D}}{2a} \in \mathbb{H}$. $\tau_Q \sim \tau_{Q'}$ in the sense that $\tau_Q = \gamma \tau_{Q'}$ for some $\gamma \in \Gamma$.

 This way each [Q] ∈ Γ\Q_D corresponds to a CM point τ_Q ∈ Γ\H.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For a given quadratic form Q = [A, B, C], we associate a complex number τ_Q = ^{−B+√D}/_{2A} ∈ ℍ.
- Given two equivalent quadratic forms, $[A, B, C] = Q \sim Q' = [a, b, c] \in Q_D$,

we can get two equivalent complex numbers, $\tau_Q = \frac{-B + \sqrt{D}}{2A}$ and $\tau_{Q'} = \frac{-b + \sqrt{D}}{2a} \in \mathbb{H}$. $\tau_Q \sim \tau_{Q'}$ in the sense that $\tau_Q = \gamma \tau_{Q'}$ for some $\gamma \in \Gamma$.

- This way each [Q] ∈ Γ\Q_D corresponds to a CM point τ_Q ∈ Γ\Ⅲ.
- D = -4, h(D) = 1, $\Gamma \setminus Q_D = \{Q = [1, 0, 1]\}, \tau_Q = \sqrt{-1}$.

What can we say about h_D ? How many $\tau_Q \in \Gamma \setminus \mathbb{H}$ are there?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What can we say about h_D ? How many $\tau_Q \in \Gamma \setminus \mathbb{H}$ are there?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• Gauss' conjecture: $h(D) \rightarrow \infty$ as $D \rightarrow -\infty$

What can we say about h_D ? How many $\tau_Q \in \Gamma \setminus \mathbb{H}$ are there?

- Gauss' conjecture: $h(D) \rightarrow \infty$ as $D \rightarrow -\infty$
 - Hecke (1918): If Generalized Riemann Hypothesis is true then *h*(*D*) → ∞ as *D* → −∞

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

What can we say about h_D ?

How many $\tau_Q \in \Gamma \setminus \mathbb{H}$ are there?

- Gauss' conjecture: $h(D) \rightarrow \infty$ as $D \rightarrow -\infty$
 - Hecke (1918): If Generalized Riemann Hypothesis is true then *h*(*D*) → ∞ as *D* → −∞

(ロ) (同) (三) (三) (三) (○) (○)

• Deuring (1933): If Riemann Hypothesis is false then $h(D) \ge 2$ for all -D sufficiently large

What can we say about h_D ?

How many $\tau_Q \in \Gamma \setminus \mathbb{H}$ are there?

- Gauss' conjecture: $h(D) \to \infty$ as $D \to -\infty$
 - Hecke (1918): If Generalized Riemann Hypothesis is true then *h*(*D*) → ∞ as *D* → −∞
 - Deuring (1933): If Riemann Hypothesis is false then $h(D) \ge 2$ for all -D sufficiently large
 - Mordell, Heilbronn(1934): If GRH is false then $h(D) \rightarrow \infty$ as $D \rightarrow -\infty$

A D F A 同 F A E F A E F A Q A

• Theorem: $h(D) \to \infty$ as $D \to -\infty$

What can we say about h_D ?

How many $\tau_Q \in \Gamma \setminus \mathbb{H}$ are there?

- Gauss' conjecture: $h(D) \to \infty$ as $D \to -\infty$
 - Hecke (1918): If Generalized Riemann Hypothesis is true then *h*(*D*) → ∞ as *D* → −∞
 - Deuring (1933): If Riemann Hypothesis is false then $h(D) \ge 2$ for all -D sufficiently large
 - Mordell, Heilbronn(1934): If GRH is false then $h(D) \rightarrow \infty$ as $D \rightarrow -\infty$

A D F A 同 F A E F A E F A Q A

• Theorem: $h(D) \to \infty$ as $D \to -\infty$

 Theorem: (Siegel) For every ε > 0, there exists a constant c which cannot be effectively computed such that h(D) > c|D|^{1/2-ε}

(ロ) (同) (三) (三) (三) (○) (○)

 Theorem: (Siegel) For every ε > 0, there exists a constant c which cannot be effectively computed such that h(D) > c|D|^{1/2-ε}

(日) (日) (日) (日) (日) (日) (日)

• Gauss class number one problem for D < 0 :

- Theorem: (Siegel) For every ε > 0, there exists a constant c which cannot be effectively computed such that h(D) > c|D|^{1/2-ε}
- Gauss class number one problem for D < 0 :
 - Theorem (Heilbronn-Linfoot(1934)) There are at most ten negative fundamental discirminants D < 0 for which h(D) = 1; D = -3, -4, -7, -8, -11, -19, -43, -67, -163, ?

(日) (日) (日) (日) (日) (日) (日)

- Theorem: (Siegel) For every ε > 0, there exists a constant c which cannot be effectively computed such that h(D) > c|D|^{1/2-ε}
- Gauss class number one problem for D < 0 :
 - Theorem (Heilbronn-Linfoot(1934)) There are at most ten negative fundamental discirminants D < 0 for which h(D) = 1; D = -3, -4, -7, -8, -11, -19, -43, -67, -163, ?
 - Theorem (Baker(1966), Stark(1967), Heegner (1952))

$$h(D) = 1 \iff D = -3, -4, -7, -8, -11, -19, -43, -67, -163$$

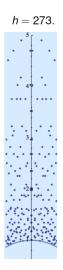
(日) (日) (日) (日) (日) (日) (日)

- Theorem: (Siegel) For every ε > 0, there exists a constant c which cannot be effectively computed such that h(D) > c|D|^{1/2-ε}
- Gauss class number one problem for D < 0 :
 - Theorem (Heilbronn-Linfoot(1934)) There are at most ten negative fundamental discirminants D < 0 for which h(D) = 1; D = -3, -4, -7, -8, -11, -19, -43, -67, -163,?
 - Theorem (Baker(1966), Stark(1967), Heegner (1952))

 $h(D) = 1 \iff D = -3, -4, -7, -8, -11, -19, -43, -67, -163.$

(日) (日) (日) (日) (日) (日) (日)

 Theorem (Goldfeld(1976), Gross-Zagier (1983)) For every *ϵ* > 0, there exists an effectively computable constant c such that h(D) > c(log |D|)^{1-ϵ}.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

$$D = -1299743$$

$$h = 945.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$D = -573259391$$
 $h = 34125.$

▲□▶▲圖▶▲圖▶▲圖▶

æ

Theorem (W.Duke)

For D < 0 be a fundamental discriminant, let $\Lambda_D = \Gamma \setminus Q_D$. Then the set Λ_D becomes uniformly distributed in $SL_2(\mathbb{Z}) \setminus \mathbb{H}$ as $D \to \infty$. That is, given $\phi \in C_c^{\infty}(SL_2(\mathbb{Z}) \setminus \mathbb{H})$ we have

$$\frac{1}{h(D)}\sum_{\tau_Q\in\Lambda_D}\phi(\tau_Q)\to\int_{\mathsf{SL}_2(\mathbb{Z})\backslash\mathbb{H}}\phi(\tau)d\mu(\tau)$$

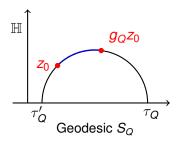
where $d\mu(\tau)$ is the SL(2, \mathbb{R})-invariant probability measure on SL₂(\mathbb{Z})\ \mathbb{H}

(日) (日) (日) (日) (日) (日) (日)

What if *D* > 0?

The root τ_Q of $Q(\tau, 1) = 0$ for $Q \in Q_D$ is a real quadratic irrationality.

For D > 0, non-square, to each $Q = [A, B, C] \in Q_D$, we can associate a geodesic $S_Q = A |\tau|^2 + B \operatorname{Re}(\tau) + C \in \mathbb{H}$ and a closed geodesic $C_Q \in \Gamma \setminus \mathbb{H}$.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For D > 0, let t, u be the smallest positive integers for which $t^2 - Du^2 = 4$ and $\varepsilon_D = \frac{1}{2}(t + u\sqrt{D})$.

For any $Q \in Q_D$ we have

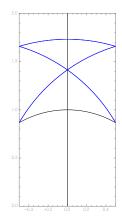
$$\int_{C_Q} 1 ds(\tau) = \int_{C_Q} 1 \frac{d\tau}{Q(\tau, 1)} = \log \varepsilon_D$$

where $ds(\tau)$ is the hyperbolic arc length.

$$\sum_{Q\in\Gamma\setminus\mathcal{Q}_D}\int_{\mathcal{C}_Q}\mathbf{1}ds(\tau)=h_D\log\varepsilon_D$$

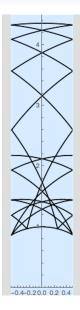
(日) (日) (日) (日) (日) (日) (日)

D = 12



◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

$$D = 28$$
 $h = 2$



D = 4x787 h = 1

What can we say about h(D), the number of geodesics? Class number one problem for real quadratic fields:

h(D) = 1 for infinitely many D > 0.

What can we say about h(D), the number of geodesics? Class number one problem for real quadratic fields:

h(D) = 1 for infinitely many D > 0.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

This is completely open.

What can we say about the total length of the geodesics?

What can we say about the total length of the geodesics? $h_D \log \varepsilon_D$?

(日) (日) (日) (日) (日) (日) (日)

Theorem (Siegel)

For every $\epsilon > 0$, there exists a constant c which cannot be effectively computed such that $h(D) \log \varepsilon_D > cD^{1/2-\epsilon}$.

Theorem (Duke)

For D > 0 be a fundamental discriminant, let $\Lambda_D = \Gamma \setminus Q_D$ be the set of closed geodesics. Then the set Λ_D becomes uniformly distributed in $SL_2(\mathbb{Z}) \setminus \mathbb{H}$ as $D \to \infty$. That is, given $\phi \in C_c^{\infty}(SL_2(\mathbb{Z}) \setminus \mathbb{H})$ we have

$$\frac{1}{h(D)\log\varepsilon_D}\sum_{C_Q\in\Lambda_D}\int_{C_Q}\phi(\tau)ds(\tau)\to\int_{\mathsf{SL}_2(\mathbb{Z})\backslash\mathbb{H}}\phi(\tau)d\mu(\tau)$$

(日) (日) (日) (日) (日) (日) (日)

Linnik, Einsiedler, Lindenstrauss, Michel, Venkatesh...

How does W. Duke prove his theorems?

He proved that "Weyl sums" are small.

If $u : \mathbb{H} \longrightarrow \mathbb{C}$ is a Maass cusp form

$$\frac{1}{h(D)} \sum_{\tau_Q \in \Lambda_D} \frac{1}{w_Q} u(\tau_Q) \to 0, \ 0 > D \to -\infty$$
$$\frac{1}{h(D) \log \varepsilon_D} \sum_{C_Q \in \Lambda_D} \int_{C_Q} u(\tau) ds(\tau) \to 0, \ 0 < D \to \infty$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

H. Weyl's theorem on uniform distribution in \mathbb{R}/\mathbb{Z} .

We say a sequence of points $\{x_n\}_{n=0}^{\infty}$ is **uniformly distributed** in [0, 1] if for all $0 \le a \le b \le 1$,

$$\lim_{N\to\infty}\frac{\#\{n\leq N\mid a\leq x_n\leq b\}}{N}=b-a.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

H. Weyl's theorem on uniform distribution in \mathbb{R}/\mathbb{Z} .

We say a sequence of points $\{x_n\}_{n=0}^{\infty}$ is **uniformly distributed** in [0, 1] if for all $0 \le a \le b \le 1$,

$$\lim_{N\to\infty}\frac{\#\{n\leq N\mid a\leq x_n\leq b\}}{N}=b-a.$$

Note this says that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(x_n) = \int_0^1 f(x)dx$$

holds with $f = \chi_{[a,b]}$, the characteristic function of [a, b].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem (H.Weyl)

The sequence $\{x_n\}$ is uniformly distributed in \mathbb{R}/\mathbb{Z} if and only if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}e(mx_n)=\int_0^1e(mx)dx=0, \ \forall m\in\mathbb{Z}\backslash\{0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

To prove

$$\frac{1}{h(D)}\sum_{\tau_Q\in\Lambda_D}\frac{1}{w_Q}u(\tau_Q)\to 0, \ 0>D\to -\infty$$

one needs to give a good bound for $\operatorname{Tr}_D(u) := \sum_{\tau_Q \in \Lambda_D} \frac{1}{w_Q} u(\tau_Q)$ which beats the Siegel bound for h(D).

$$h(D) > c|D|^{1/2-\epsilon}, \text{ if } D < 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

How can one prove a good bound for the Weyl sum $Tr_D(u)$?

- 1 Relate $Tr_D(u)$ to the *D*-th Fourier coefficients of a half integral weight Maass form \tilde{u} using results of Maass, Katok-Sarnak.
- Use deep theorems of H. Iwaniec (extended by W. Duke) which give good bounds for the Fourier coefficients of half-integral weight forms.

(日) (日) (日) (日) (日) (日) (日)

What can we say about the values of modular functions at CM points ?

Let

$$j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + \cdots$$

be the modular invariant for $\Gamma = PSL(2, \mathbb{Z})$.

What do we know about the individual values of *j* at CM points, the **Singular moduli**

$$j(\tau_Q) = ?$$

or their sum

$$\sum_{\tau_Q \in \Gamma \setminus \mathcal{Q}_D} j(\tau_Q) = ?$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theory of complex multiplication says

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Theory of complex multiplication says

• The singular modulus $j(\tau_Q)$ depends only on the Γ -equivalence class of Q

Theory of complex multiplication says

- The singular modulus $j(\tau_Q)$ depends only on the Γ -equivalence class of Q
- Each of the h(D) = |Γ\Q_D| values j(τ_Q) is an algebraic integer of exact degree h(D)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theory of complex multiplication says

- The singular modulus $j(\tau_Q)$ depends only on the Γ -equivalence class of Q
- Each of the h(D) = |Γ\Q_D| values j(τ_Q) is an algebraic integer of exact degree h(D)
- They form a full set of Galois conjugates so that the sum of these values is the algebraic trace.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• For *D* < 0, we define the (modified) trace of singular moduli as

$$\mathsf{Tr}_{\mathcal{D}}(j_1) := \sum_{Q \in \Gamma \setminus \mathcal{Q}_{\mathcal{D}}} \frac{1}{|\Gamma_Q|} j_1(\tau_Q)$$

where $j_1(\tau) = j(\tau) - 744$

• For *D* < 0, we define the (modified) trace of singular moduli as

$$\mathsf{Tr}_{\mathcal{D}}(j_1) := \sum_{Q \in \Gamma \setminus \mathcal{Q}_{\mathcal{D}}} \frac{1}{|\Gamma_Q|} j_1(\tau_Q)$$

where $j_1(\tau) = j(\tau) - 744$

• In general for $f \in \mathcal{M}_0^!(\Gamma)$, define

$$\operatorname{Tr}_{D}(f) := \sum_{Q \in \Gamma \setminus \mathcal{Q}_{D}} \frac{1}{|\Gamma_{Q}|} f(\tau_{Q})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 For D < 0, we define the (modified) trace of singular moduli as

$$\mathsf{Tr}_{\mathcal{D}}(j_1) := \sum_{Q \in \Gamma \setminus \mathcal{Q}_{\mathcal{D}}} \frac{1}{|\Gamma_Q|} j_1(\tau_Q)$$

where $j_1(\tau) = j(\tau) - 744$

• In general for $f \in \mathcal{M}_0^!(\Gamma)$, define

$$\mathsf{Tr}_{\mathcal{D}}(f) := \sum_{Q \in \Gamma \setminus \mathcal{Q}_D} \frac{1}{|\Gamma_Q|} f(\tau_Q)$$

 $\begin{aligned} \mathsf{Tr}_{\mathcal{D}}(1) &= \sum_{Q \in \Gamma \setminus \mathcal{Q}_{\mathcal{D}}} \frac{1}{|\Gamma_{Q}|} = \mathcal{H}(|\mathcal{D}|), \ \text{Hurwitz class number} \\ \mathcal{H}(0) &:= \frac{-1}{12} \end{aligned}$

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Traces of modular functions

m	$\mathrm{T}r_{-3}(j_m)$	$\mathrm{T}r_{-4}(j_m)$	$Tr_{-7}(j_m)$
0	1/3	1/2	1
1	-248	492	-4119
2	53256	287244	16572393
3	-12288992	153540528	-67515202851

$$j_0 = 1$$

 $j_1 = j - 744$
 $j_2 = j^2 - 1488j + 159768$
 $j_3 = j^3 - 2232j^2 + 1069956j - 36866976$

Here the functions j_m , for $m \ge 0$ are of the form

$$j_m(\tau) = q^{-m} + \sum_{n \ge 1} c_m(n) q^n, \qquad (q = e(\tau) = e^{2\pi i \tau})$$
 (0.1)

They form a basis for the space $\mathbb{C}[j]$ of all weakly holomorphic modular forms of weight 0 and they have a generating function that goes back to Faber :

$$2\pi i \sum_{m \ge 0} j_m(z) q^m = \frac{j'(\tau)}{j(z) - j(\tau)}.$$
 (0.2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note that this formal series converges when $Im(\tau) > Im(z)$.

m	$\mathrm{T}r_{-3}(j_m)$	$\mathrm{T}r_{-4}(j_m)$	$\mathrm{T}r_{-7}(j_m)$
0	1/3	1/2	1
1	-248	492	-4119
2	53256	287244	16572393
3	-12288992	153540528	-67515202851

Let g_1 be the function given in terms of the usual modular forms E_4 and Δ and θ by

$$g_1(au) = heta(au+rac{1}{2})rac{E_4(4 au)}{\Delta(4 au)^{1/4}}.$$

Then

$$g_1(au) = q^{-1} - 2 + 248 \, q^3 - 492 \, q^4 + 4119 \, q^7 + \cdots$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We have the following beautiful theorem of Zagier. Theorem (D. Zagier) *Let*

$$g(au) = q^{-1} + \sum_{0 \le n \equiv 0, 3(4)} \operatorname{Tr}_{-n}(j_1) q^n$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Then $g \in M^!_{3/2}$.

What if *D* > 0?

The root *τ_Q* of *Q*(*τ*, 1) = 0 for *Q* ∈ *Q_D* is a real quadratic irrationality.

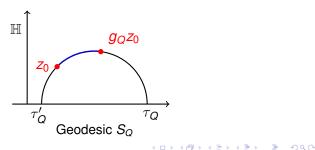
What if *D* > 0?

- The root τ_Q of Q(τ, 1) = 0 for Q ∈ Q_D is a real quadratic irrationality.
- Can we extend the definiton of "the value" of *j*(τ_Q), to these real quadratic irrationalities?

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

What if *D* > 0?

- The root *τ_Q* of *Q*(*τ*, 1) = 0 for *Q* ∈ *Q_D* is a real quadratic irrationality.
- Can we extend the definiton of "the value" of *j*(τ_Q), to these real quadratic irrationalities?
- Recall for D > 0, non-square, to each Q = [A, B, C] ∈ Q_D, we have associated a geodesic
 S_Q = A|τ|² + B Re(τ) + C ∈ ℍ and a closed geodesic
 C_Q∈ Γ\ℍ.



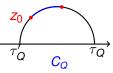
• 2008, M. Kaneko and W. Duke, I., A. Toth independently defined real quadratic analogues of singular moduli through the cycle integrals of the j-function.

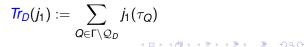
(ロ) (同) (三) (三) (三) (○) (○)

• 2008, M. Kaneko and W. Duke, I., A. Toth independently defined real quadratic analogues of singular moduli through the cycle integrals of the j-function.

$$"j(\tau_Q)" := \int_{z_0}^{g_Q z_0} j_1(z) \frac{dz}{Az^2 + Bz + C} = \int_{C_Q} j_1(z) \frac{dz}{Q(z, 1)}$$

 $g_Q Z_0$





Numerical approximations to the first few traces for D > 0.

m	$\mathrm{T}r_{5}(j_{m})$	$\mathrm{T}r_{8}(j_{m})$	$Tr_{12}(j_m)$	$Tr_{13}(j_m)$
0	.30634	.56109	.83840	.76060
1	-11.54175	-19.13749	-28.67973	-23.40950
2	-25.85662	-50.69769	-74.46436	-69.09778
3	-32.00316	-55.08485	-86.06819	-79.31283

Numerical approximations to the first few traces for D > 0.

m	$\mathrm{T}r_{5}(j_{m})$	$\mathrm{T}r_{8}(j_{m})$	$Tr_{12}(j_m)$	$Tr_{13}(j_m)$
0	.30634	.56109	.83840	.76060
1	-11.54175	-19.13749	-28.67973	-23.40950
2	-25.85662	-50.69769	-74.46436	-69.09778
3	-32.00316	-55.08485	-86.06819	-79.31283

m	$\mathrm{T}r_{-3}(j_m)$	$\mathrm{T}r_{-4}(j_m)$	$\mathrm{T}r_{-7}(j_m)$
0	1/3	1/2	1
1	-248	492	-4119
2	53256	287244	16572393
3	-12288992	153540528	-67515202851

• The theory of these real quadratic analogues is still in its infancy.

- The theory of these real quadratic analogues is still in its infancy.
- Direct connections with arithmetic have not been found.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- The theory of these real quadratic analogues is still in its infancy.
- Direct connections with arithmetic have not been found.
- However, some connections with modular forms have.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (W. Duke, I., A. Toth and J. Bruinier, J. Funke, I.) *The function*

$$h(\tau) = \sum_{D \ge 0} \operatorname{Tr}_D(j_1) q^D + \frac{g^*(\tau)}{g^*(\tau)}$$

has weight 1/2 for $\Gamma_0(4)$, i.e. it transforms like $\theta(\tau)$.

The non holomorphic correction term $g^*(\tau)$ satisfy the differential equation

$$2iy^{1/2}rac{d}{dar{ au}}g^*(au)=\overline{g(au)}$$

where $g(\tau)$ is Zagier's function. Moreover h is harmonic.

$$\Delta_{1/2}(h)=0$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Kaneko studied the numerical values of $j(\tau_Q)$ and made several remarkable observations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Kaneko studied the numerical values of $j(\tau_Q)$ and made several remarkable observations. For a general quadratic irrationality, among his many observations, we note the following boundedness conjecture.

(ロ) (同) (三) (三) (三) (○) (○)

Kaneko studied the numerical values of $j(\tau_Q)$ and made several remarkable observations. For a general quadratic irrationality, among his many observations, we note the following boundedness conjecture.

Conjecture (M. Kaneko)

Let $w \in \mathbb{Q}(\sqrt{D})$ be a real quadratic irrationality. Then

 $\operatorname{Re}(j^{nor}(w)) \in [706.324...,744]$ and $\operatorname{Im}(j^{nor}(w)) \in (-1,1)$

Kaneko studied the numerical values of $j(\tau_Q)$ and made several remarkable observations. For a general quadratic irrationality, among his many observations, we note the following boundedness conjecture.

Conjecture (M. Kaneko) Let $w \in \mathbb{Q}(\sqrt{D})$ be a real quadratic irrationality. Then $\operatorname{Re}(j^{nor}(w)) \in [706.324...,744]$ and $\operatorname{Im}(j^{nor}(w)) \in (-1,1)$

where

706.324... =
$$j^{nor}(\frac{(1+\sqrt{5})}{2})$$
, and $j^{nor}(w) := \frac{\sqrt{D}}{2\log \varepsilon} j(w)$.

Every $x \in \mathbb{R}$ has a unique '-' continued fraction expansion $x = (b_0, b_1, b_2, ...)$ with $b_i \in \mathbb{Z}$, $b_i \ge 2$ for $i \ge 1$

$$x = (b_0, b_1, b_2, \ldots) = b_0 - \frac{1}{b_1 - \frac{1}{b_2 - \frac{1}{\ddots}}}$$

and a unique '+' continued fraction expansion $x = [a_0, a_1, a_2, ...]$ with $a_i \in \mathbb{Z}$ and $a_i \ge 1$ for $i \ge 1$.

$$x = [a_0, a_1, a_2, \ldots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

w is a quadratic irrationality if and only if its '-' continued fraction expansion (or equivalently, its '+' continued fraction) is eventually periodic.

For N > 2, we have

$$w = \frac{N + \sqrt{N^2 - 4}}{2} = (N, N, N \dots) = (\overline{N})$$

For the golden ratio we have

2

$$w = \frac{1 + \sqrt{5}}{2} = (2, 3, 3, 3, 3 \cdots) = (2, \bar{3})$$
$$w = \frac{1 + \sqrt{5}}{2} = [1, 1, 1, \ldots] = [\bar{1}] = [\bar{1}_2]$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Bengoechea, I.)

Let w be a real quadratic number with purely periodic negative continued fraction $w = (\overline{b_1, \dots, b_n})$. Then we have

- 1 $\operatorname{Re}(j^{nor}(w)) \leq 744.$
- 2 For any positive integer N > 2, the value $j^{nor}((\overline{N}))$ for the quadratic number $w = (\overline{N})$ is real and

$$\lim_{N\to\infty} j^{nor}((\overline{N})) = 744.$$

3 Let $(1 + \sqrt{5})/2 = (2, \overline{3})$ be the golden ratio. If all the partial quotients b_r of w satisfy $b_r > 3M$ with $M = e^{55}$ then

$$\operatorname{Re}(j^{nor}(w)) \geq j^{nor}((1+\sqrt{5})/2).$$

(日) (日) (日) (日) (日) (日) (日)

The generating function of $Tr_d(j_m)$, m = 0, 1, ...

Let

$$F_d(au) := -\sum_{m=0}^{\infty} \operatorname{Tr}_d(j_m) q^m.$$

Then we have

Theorem (Duke-I-Toth)

For each d > 0 not a square the function F_d is a holomorphic modular integral of weight 2 with a rational period function:

$$F_d(\tau) - \tau^{-2}F_d(-1/\tau) = -rac{\sqrt{d}}{\pi}\sum_{\substack{c < 0 < a \ b^2 - 4ac = d}} (a\tau^2 + b au + c)^{-1}.$$
 (0.3)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Note that the period function has simple poles at certain real quadratic integers of discriminant *d*.
- This is the analog of a theorem of Borcherds who defined a function *F_d* which has singularities at CM points when *d* < 0.
- The appearance of a rational period function is perhaps not too surprising in view of the case d = 0.

$$\tau^{-2}E_2(-1/\tau) = E_2(\tau) + (2\pi i \tau)^{-1}.$$
 (0.4)

(日) (日) (日) (日) (日) (日) (日)

We can also define a function F_Q(τ) associated to one class in [Q] ∈ Γ\Q_d.

$$F_Q(au) := -\sum_{m=0}^{\infty} a_Q(m) q^m$$

where

$$a_Q(m) := \sqrt{d} \int_{C_Q} j_m(z) \frac{dz}{Q(z,1)}.$$

- *F_Q*(*τ*) is again a modular integral with a rational period function.
- $F_Q(\tau)$ has an interesting application to topology.

• Let $V = \{(z, w) \in \mathbb{C}^2 : z^3 - 27w^2 = 0\}$, and $T = V \cap S^3$, the trefoil knot.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Let $V = \{(z, w) \in \mathbb{C}^2 : z^3 - 27w^2 = 0\}$, and $T = V \cap S^3$, the trefoil knot.

• A remarkable fact: The homogeneous space

 $\mathsf{SL}(2,\mathbb{Z})\backslash\,\mathsf{SL}(2,\mathbb{R})$

(ロ) (同) (三) (三) (三) (○) (○)

is diffeomorphic to $S^3 - T$, the complement of the trefoil knot in the 3-sphere.

$$E_2(\tau) = \frac{1}{2\pi i} \frac{\Delta'(\tau)}{\Delta(\tau)} = 1 - 24 \sum \sigma(n) q^n$$

Dedekind studied the transformation law for the logarithm of

$$\Delta(\tau) = q \prod_{m \ge 1} (1 - q^n)^{24}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$E_2(\tau) = \frac{1}{2\pi i} \frac{\Delta'(\tau)}{\Delta(\tau)} = 1 - 24 \sum \sigma(n) q^n$$

Dedekind studied the transformation law for the logarithm of

$$\Delta(\tau) = q \prod_{m \ge 1} (1 - q^n)^{24}$$

For any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ with $c \neq 0$ we have $\log \Delta(\gamma \tau) - \log \Delta(\tau) = 6 \log(-(c\tau + d)^2) + 2\pi i \Phi(\gamma).$ We set $\Phi(\gamma) = 0$ if c = 0.

Here $\Phi(\gamma)$ is the Dedekind Symbol

$$\Phi(\gamma) = \frac{a+d}{c} - 12 \operatorname{sign}(c) \cdot s(a,c),$$

s(a, c) is the Dedekind sum defined for gcd(a, c) = 1, $c \neq 0$ by

$$s(a,c) = \sum_{n=1}^{|c|-1} \left(\left(\frac{n}{c} \right) \right) \left(\left(\frac{na}{c} \right) \right).$$

((x)) = 0 if $x \in \mathbb{Z}$ and otherwise

$$((x)) = x - \lfloor x \rfloor - 1/2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The Rademacher Symbol $\Psi(\gamma)$ is

$$\Psi(\gamma) = \Phi(\gamma) - 3sign(c(a+d)).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• The Dedekind symbol $\Phi(\gamma)$ is not a conjugacy class invariant but the Rademacher symbol $\Psi(\gamma)$ is.

• The Rademacher Symbol $\Psi(\gamma)$ is

$$\Psi(\gamma) = \Phi(\gamma) - 3sign(c(a+d)).$$

- The Dedekind symbol Φ(γ) is not a conjugacy class invariant but the Rademacher symbol Ψ(γ) is.
- For γ hyperbolic Ψ(γ) is the homogenization of the Dedekind symbol Φ(γ),

$$\Psi(\gamma) = \lim_{n o \infty} rac{\Phi(\gamma^n)}{n}$$

 E. Ghys gave the beautiful result that the linking number of a "modular knot κ_γ" with the trefoil is given by the Rademacher symbol Ψ(γ).

Let γ = (^{a b}_{c d}) ∈ Γ be a primitive hyperbolic element with an eigenvalue ε > 1.

- Let γ = (^{a b}_{c d}) ∈ Γ be a primitive hyperbolic element with an eigenvalue ε > 1.
- Fix a $M \in G = SL(2, \mathbb{R})$ so that

$$M^{-1}\gamma M = \begin{pmatrix} \epsilon & \mathbf{0} \\ \mathbf{0} & \mathbf{1}/\epsilon \end{pmatrix}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Let γ = (^{a b}_{c d}) ∈ Γ be a primitive hyperbolic element with an eigenvalue ε > 1.
- Fix a $M \in G = SL(2, \mathbb{R})$ so that

$$M^{-1}\gamma M = \begin{pmatrix} \epsilon & 0 \\ 0 & 1/\epsilon \end{pmatrix}.$$

Consider the 1-parameter subgroup

$$arphi(t) = egin{pmatrix} oldsymbol{e}^t & oldsymbol{0} \ oldsymbol{0} & oldsymbol{e}^{-t} \end{pmatrix}$$

and the associated flow

$$egin{array}{lll} G imes \mathbb{R}\longmapsto G\ (g,t)\longmapsto garphi(t) \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\phi^t: \Gamma g \longmapsto \Gamma g \varphi(t).$

$$\phi^t: \Gamma g \longmapsto \Gamma g \varphi(t).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

γ̃(t) = Mφ(t) is a periodic orbit in Γ\G with period log ε.
 i.e. γ̃(t + log ε) = γ̃(t) in Γ\G.

$$\phi^t: \Gamma g \longmapsto \Gamma g \varphi(t).$$

- γ̃(t) = Mφ(t) is a periodic orbit in Γ\G with period log ε.
 i.e. γ̃(t + log ε) = γ̃(t) in Γ\G.
- This orbit depends only on the conjugacy class of γ .

$$\phi^t: \Gamma g \longmapsto \Gamma g \varphi(t).$$

(日) (日) (日) (日) (日) (日) (日)

- γ̃(t) = Mφ(t) is a periodic orbit in Γ\G with period log ε.
 i.e. γ̃(t + log ε) = γ̃(t) in Γ\G.
- This orbit depends only on the conjugacy class of γ .
- Periodic orbits of the geodesic flow correspond to conjugacy classes of hyperbolic elements.

$$\phi^t: \Gamma g \longmapsto \Gamma g \varphi(t).$$

- γ̃(t) = Mφ(t) is a periodic orbit in Γ\G with period log ε.
 i.e. γ̃(t + log ε) = γ̃(t) in Γ\G.
- This orbit depends only on the conjugacy class of γ .
- Periodic orbits of the geodesic flow correspond to conjugacy classes of hyperbolic elements.
- These orbits are also related to classes of indefinite binary quadratic forms

- Let Q(X, Y) = AX² + BXY + CY² be a quadratic forms of discriminant D = B² 4AC,
- t, u are the smallest positive solutions of Pell's equation $t^2 Du^2 = 4$, and

$$\sigma_{Q} = \begin{pmatrix} \frac{t+Bu}{2} & Cu\\ -Au & \frac{t-Bu}{2} \end{pmatrix}.$$

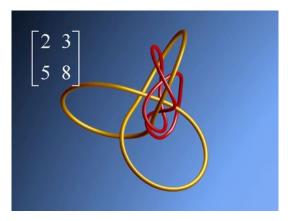
 The association Q → σ_Q sets up a bijection between elements of the class C of the quadratic form Q and the conjugacy class of σ_Q, which by abuse of notation will also be denoted by C.

(日) (日) (日) (日) (日) (日) (日)

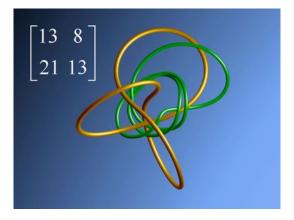
The image of the periodic orbit $\tilde{\gamma}(t)$ in $S^3 - T$ is a knot, κ_{γ} , called a modular knot.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The image of the periodic orbit $\tilde{\gamma}(t)$ in $S^3 - T$ is a knot, κ_{γ} , called a modular knot.



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

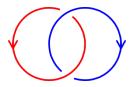
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

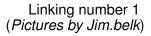
Pictures: "Mathematical Imagery" by Jos Leys

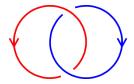
Suppose that two oriented knots K_1 and K_2 do not intersect, and project them onto a plane in a generic way. These projections need not be disjoint.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose that two oriented knots K_1 and K_2 do not intersect, and project them onto a plane in a generic way. These projections need not be disjoint.







◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Linking number -1

Theorem (E. Ghys)

The linking number of the modular knot κ_{γ} and the trefoil is given by the Rademacher symbol.

$$\operatorname{Lk}(\kappa_{\gamma}, T) = \Psi(\gamma)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Dedekind Symbol has other representations.

• For $c \neq 0$, let

$$R(\gamma, z) = 6\log(-(cz+d)^2) + 2\pi i\Phi(\gamma) = \log\Delta(\gamma\tau) - \log\Delta(\tau)$$

Then

$$\Phi(\gamma) = \frac{1}{2\pi} \lim_{y \to \infty} \operatorname{Im} R(\gamma, iy).$$

 It also has a representation in terms of the special value of an *L*- function associated to *E*₂(*z*).

$$L(s, a/c) = \sum_{n \ge 1} \sigma(n) e(\frac{a}{c}n) n^{-s}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• At the end of his paper, *Knots and Dynamics*, E. Ghys mentions the problem of interpreting the linking number between two modular knots.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- At the end of his paper, *Knots and Dynamics*, E. Ghys mentions the problem of interpreting the linking number between two modular knots.
- We will look at this problem by giving an appropriate generalization of the Dedekind symbol.

(ロ) (同) (三) (三) (三) (○) (○)

• For an hyperbolic element $\sigma \in C$ let

$$a_{\mathcal{C}}(m) = \sqrt{D'} \int_{z_0}^{\sigma z_0} j_m(z) \frac{dz}{Q_{\sigma}(z)}.$$

• Define for $\alpha \in \mathbb{Q}$ the Dirichlet series

$$L_{\mathcal{C}}(\boldsymbol{s},\alpha) = \sum_{\boldsymbol{n} \ge 1} \boldsymbol{a}_{\mathcal{C}}(\boldsymbol{n}) \boldsymbol{e}(\boldsymbol{n}\alpha) \boldsymbol{n}^{-\boldsymbol{s}}, \qquad (0.5)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Then L_C(s, a/c) converges for Re(s) > 9/4, has a meromorphic continuation to s > 0 and is holomorphic at s = 1.

 We define a new Dedekind symbol, Dedekind symbol associate to the conjugacy class C,

$$\Phi_{\mathcal{C}}(\gamma) := -\frac{1}{\pi^2} \operatorname{Re} L_{\mathcal{C}}(1, \frac{a}{c}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Then we have

• Theorem [DIT] $\Phi_{\mathcal{C}}(\gamma)$ is an integer.

 For simplicity we assume σ ∈ C_σ is conjugate to its inverse, ie. σ ~ σ⁻¹. Then the modular knot κ_σ is null-homologous in S³ − T. For two such knots κ_σ and κ_γ we have

Theorem (DIT)

Let

$$\Psi_{\sigma}(\gamma) = \lim_{n \to \infty} \frac{\Phi_{\mathcal{C}_{\sigma}}(\gamma^n)}{n}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Then the limit exists and

 For simplicity we assume σ ∈ C_σ is conjugate to its inverse, ie. σ ~ σ⁻¹. Then the modular knot κ_σ is null-homologous in S³ − T. For two such knots κ_σ and κ_γ we have

Theorem (DIT)

Let

$$\Psi_{\sigma}(\gamma) = \lim_{n \to \infty} \frac{\Phi_{\mathcal{C}_{\sigma}}(\gamma^n)}{n}.$$

Then the limit exists and

$$\Psi_{\sigma}(\gamma) = \mathsf{Lk}(\kappa_{\gamma}, \kappa_{\sigma}).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

THANK YOU!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●