
Some applications of Modular Forms



• H := {τ ∈ C | Im(τ) > 0}, the Upper Half Plane

• SL(2,Z) =
{(

a b
c d

)
∈ M2×2(Z) | ad − bc = 1

}
• Γ = PSL(2,Z) = SL(2,Z)/{±id}, The Modular group.
• Γ acts on H by linear fractional transformations;

H 3 τ 7→ γτ =
aτ + b
cτ + d

∈ H
(
γ =

(
a b
c d

)
∈ Γ
)



The fundamental domain Γ\H and the tiling of H

Γ\H

H



Quadratic forms

• For Z 3 D ≡ 0,1 (mod 4), let QD be the set of integral
binary quadratic forms of discriminant D that are positive
definite if D < 0.

QD := {Q = [A,B,C] | A,B,C ∈ Z,B2 − 4AC = D}

where [A,B,C] := Q(x , y) = Ax2 + Bxy + Cy2

• Γ = PSL(2,Z) acts also on QD.
• For γ =

(
a b
c d

)
∈ Γ and Q ∈ QD

(γQ)(x , y) := Q(dx − by ,−cx + ay)

• This action is compatible with the action of Γ on the roots τ
of Q(τ,1) = 0 by linear fractional transformation.



Quadratic forms

• The set of classes Γ\QD is finite.

• |Γ\QD| := h(D) is called the class number.

• The classes of primitive forms ((A,B,C) = 1) form an
abelian group, called the class group
• D = −191 h(D) = 13

Γ\QD = {[1,1,48], [2,1,242], [2,−1,24], [3,1,16],
[3,−1,16], [4,1,12], [4,−1,12], [6,1,8], [6,−1,8],
[5,3,10], [5,−3,10], [6,5,9], [6,−5,9]}
• D = 28, h(D) = 2

Γ\QD = {[1,4,−3], [−1,4,3]}



Quadratic forms

• For Q ∈ QD, the isotropy group ΓQ = {γ ∈ Γ; γQ = Q}
consists of all transformations

γ = ±
( t+Bu

2 Cu
−Au t−Bu

2

)
where (t ,u) are positive integral solutions of the Pell
equation t2 − Du2 = 4.
• If D < 0, then ΓQ = {id} unless D = −3,−4, in which case

it has order 3 or 2, respectively.
• If D > 0, then ΓQ =< gQ > is infinite cyclic with generator
γ = gQ coming from minimal t ,u > 0.



D < 0

• For a given quadratic form Q = [A,B,C], we associate a
complex number τQ = −B+

√
D

2A ∈ H.
• Given two equivalent quadratic forms,

[A,B,C] = Q ∼ Q′ = [a,b, c] ∈ QD,

we can get two equivalent complex numbers,
τQ = −B+

√
D

2A and τQ′ = −b+
√

D
2a ∈ H.

τQ ∼ τQ′ in the sense that τQ = γτQ′ for some γ ∈ Γ.

• This way each [Q] ∈ Γ\QD corresponds to a CM point
τQ ∈ Γ\H.
• D = −4, h(D) = 1, Γ\QD = {Q = [1,0,1]}, τQ =

√
−1.
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What can we say about hD?

How many τQ ∈ Γ\H are there?

• Gauss’ conjecture: h(D)→∞ as D → −∞
• Hecke (1918): If Generalized Riemann Hypothesis is true

then h(D)→∞ as D → −∞
• Deuring (1933): If Riemann Hypothesis is false then

h(D) ≥ 2 for all −D sufficiently large
• Mordell, Heilbronn(1934): If GRH is false then h(D)→∞

as D → −∞
• Theorem: h(D)→∞ as D → −∞
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• Theorem: (Siegel) For every ε > 0, there exists a constant
c which cannot be effectively computed such that
h(D) > c|D|1/2−ε

• Gauss class number one problem for D < 0 :
• Theorem (Heilbronn-Linfoot(1934)) There are at most ten

negative fundamental discirminants D < 0 for which h(D) =
1; D = −3,−4,−7,−8,−11,−19,−43,−67,−163, ?

• Theorem (Baker(1966),Stark(1967), Heegner (1952))

h(D) = 1 ⇐⇒ D = −3,−4,−7,−8,−11,−19,−43,−67,−163.

• Theorem (Goldfeld(1976), Gross-Zagier (1983)) For every
ε > 0, there exists an effectively computable constant c
such that h(D) > c(log |D|)1−ε.
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Theorem (W.Duke)
For D < 0 be a fundamental discriminant, let ΛD = Γ\QD. Then
the set ΛD becomes uniformly distributed in SL2(Z)\H as
D →∞. That is, given φ ∈ C∞c (SL2(Z)\H) we have

1
h(D)

∑
τQ∈ΛD

φ(τQ)→
ˆ

SL2(Z)\H
φ(τ)dµ(τ)

where dµ(τ) is the SL(2,R)-invariant probability measure on
SL2(Z)\H



What if D > 0?

The root τQ of Q(τ,1) = 0 for Q ∈ QD is a real quadratic
irrationality.
For D > 0, non-square, to each Q = [A,B,C] ∈ QD, we can
associate a geodesic SQ = A|τ |2 + B Re(τ) + C ∈ H and a
closed geodesic CQ∈ Γ\H.

H

z0

gQz0

τ ′Q τQ
Geodesic SQ



For D > 0, let t ,u be the smallest positive integers for which
t2 − Du2 = 4 and εD = 1

2(t + u
√

D).

For any Q ∈ QD we have
ˆ

CQ

1ds(τ) =

ˆ
CQ

1
dτ

Q(τ,1)
= log εD

where ds(τ) is the hyperbolic arc length.∑
Q∈Γ\QD

ˆ
CQ

1ds(τ) = hD log εD.



D = 12

-0.4 -0.2 0.0 0.2 0.4
0.0

0.5

1.0

1.5

2.0



D = 28 h = 2



D = 4x787 h = 1



What can we say about h(D), the number of geodesics?

Class number one problem for real quadratic fields:

h(D) = 1 for infinitely many D > 0.

This is completely open.
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What can we say about the total length of the geodesics?

hD log εD?

Theorem (Siegel)
For every ε > 0, there exists a constant c which cannot be
effectively computed such that h(D) log εD > cD1/2−ε.



What can we say about the total length of the geodesics?
hD log εD?

Theorem (Siegel)
For every ε > 0, there exists a constant c which cannot be
effectively computed such that h(D) log εD > cD1/2−ε.



Theorem (Duke)
For D > 0 be a fundamental discriminant, let ΛD = Γ\QD be the
set of closed geodesics. Then the set ΛD becomes uniformly
distributed in SL2(Z)\H as D →∞.
That is, given φ ∈ C∞c (SL2(Z)\H) we have

1
h(D) log εD

∑
CQ∈ΛD

ˆ
CQ

φ(τ)ds(τ)→
ˆ

SL2(Z)\H
φ(τ)dµ(τ)

Linnik, Einsiedler, Lindenstrauss, Michel, Venkatesh...



How does W. Duke prove his theorems?

He proved that “ Weyl sums” are small.

If u : H −→ C is a Maass cusp form

1
h(D)

∑
τQ∈ΛD

1
wQ

u(τQ)→ 0, 0 > D → −∞

1
h(D) log εD

∑
CQ∈ΛD

ˆ
CQ

u(τ)ds(τ)→ 0, 0 < D →∞



H. Weyl’s theorem on uniform distribution in R/Z.

We say a sequence of points {xn}∞n=0 is uniformly distributed
in [0,1] if for all 0 ≤ a ≤ b ≤ 1,

lim
N→∞

#{n ≤ N | a ≤ xn ≤ b}
N

= b − a.

Note this says that

lim
N→∞

1
N

N∑
n=1

f (xn) =

ˆ 1

0
f (x)dx

holds with f = χ[a,b], the characteristic function of [a,b].
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Theorem (H.Weyl)
The sequence {xn} is uniformly distributed in R/Z if and only if

lim
N→∞

1
N

N∑
n=1

e(mxn) =

ˆ 1

0
e(mx)dx = 0, ∀m ∈ Z\{0}



To prove

1
h(D)

∑
τQ∈ΛD

1
wQ

u(τQ)→ 0, 0 > D → −∞

one needs to give a good bound for TrD(u) :=
∑

τQ∈ΛD
1

wQ
u(τQ)

which beats the Siegel bound for h(D).

h(D) > c|D|1/2−ε, if D < 0



How can one prove a good bound for the Weyl sum TrD(u)?

1 Relate TrD(u) to the D-th Fourier coefficients of a half
integral weight Maass form ũ using results of Maass,
Katok-Sarnak.

2 Use deep theorems of H. Iwaniec (extended by W. Duke)
which give good bounds for the Fourier coefficients of
half-integral weight forms.



What can we say about the values of modular functions at CM points ?

Let

j(τ) =
1
q

+ 744 + 196884q + 21493760q2 + · · ·

be the modular invariant for Γ = PSL(2,Z).



What do we know about the individual values of j at CM points,
the Singular moduli

j(τQ) =?

or their sum ∑
τQ∈Γ\QD

j(τQ) =?



Values of modular functions at complex quadratic
irrationalities

Theory of complex multiplication says

• The singular modulus j(τQ) depends only on the
Γ-equivalence class of Q
• Each of the h(D) = |Γ\QD| values j(τQ) is an algebraic

integer of exact degree h(D)

• They form a full set of Galois conjugates so that the sum of
these values is the algebraic trace.
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• For D < 0, we define the (modified) trace of singular
moduli as

TrD(j1) :=
∑

Q∈Γ\QD

1
|ΓQ|

j1(τQ)

where j1(τ) = j(τ)− 744

• In general for f ∈M!
0(Γ), define

TrD(f ) :=
∑

Q∈Γ\QD

1
|ΓQ|

f (τQ)

TrD(1) =
∑

Q∈Γ\QD

1
|ΓQ|

= H(|D|), Hurwitz class number

H(0) :=
−1
12
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Traces of modular functions

m Tr−3(jm) Tr−4(jm) Tr−7(jm)

0 1/3 1/2 1
1 -248 492 -4119
2 53256 287244 16572393
3 -12288992 153540528 -67515202851

j0 = 1

j1 = j − 744

j2 = j2 − 1488j + 159768

j3 = j3 − 2232j2 + 1069956j − 36866976



Here the functions jm, for m ≥ 0 are of the form

jm(τ) = q−m +
∑
n≥1

cm(n)qn, (q = e(τ) = e2πiτ ) (0.1)

They form a basis for the space C[j ] of all weakly holomorphic
modular forms of weight 0 and they have a generating function
that goes back to Faber :

2πi
∑
m≥0

jm(z)qm =
j ′(τ)

j(z)− j(τ)
. (0.2)

Note that this formal series converges when Im(τ) > Im(z).



m Tr−3(jm) Tr−4(jm) Tr−7(jm)

0 1/3 1/2 1
1 -248 492 -4119
2 53256 287244 16572393
3 -12288992 153540528 -67515202851

Let g1 be the function given in terms of the usual modular forms
E4 and ∆ and θ by

g1(τ) = θ(τ + 1
2)

E4(4τ)

∆(4τ)1/4 .

Then

g1(τ) = q−1 − 2 + 248 q3 − 492 q4 + 4119 q7 + · · · .



We have the following beautiful theorem of Zagier.

Theorem (D. Zagier)
Let

g(τ) = q−1 +
∑

0≤n≡0,3(4)

Tr−n(j1)qn

Then g ∈ M !
3/2.



What if D > 0?
• The root τQ of Q(τ,1) = 0 for Q ∈ QD is a real quadratic

irrationality.

• Can we extend the definiton of “the value” of j(τQ), to these
real quadratic irrationalities?
• Recall for D > 0, non-square, to each Q = [A,B,C] ∈ QD,

we have associated a geodesic
SQ = A|τ |2 + B Re(τ) + C ∈ H and a closed geodesic
CQ∈ Γ\H.

H

z0

gQz0

τ ′Q τQ
Geodesic SQ
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“Values” of modular functions at real quadratic
irrationalities

• 2008, M. Kaneko and W. Duke, I., A. Toth independently
defined real quadratic analogues of singular moduli
through the cycle integrals of the j-function.

•

“j(τQ)” :=

ˆ gQz0

z0

j1(z)
dz

Az2 + Bz + C
=

ˆ
CQ

j1(z)
dz

Q(z,1)

z0

gQz0

τ ′Q τQ
CQ

TrD(j1) :=
∑

Q∈Γ\QD

j1(τQ)
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Numerical approximations to the first few traces for D > 0.

m Tr5(jm) Tr8(jm) Tr12(jm) Tr13(jm)

0 .30634 .56109 .83840 .76060
1 -11.54175 -19.13749 -28.67973 -23.40950
2 -25.85662 -50.69769 -74.46436 -69.09778
3 -32.00316 -55.08485 -86.06819 -79.31283

m Tr−3(jm) Tr−4(jm) Tr−7(jm)

0 1/3 1/2 1
1 -248 492 -4119
2 53256 287244 16572393
3 -12288992 153540528 -67515202851
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• Direct connections with arithmetic have not been found.
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Theorem (W. Duke, I., A. Toth and J. Bruinier, J. Funke, I.)
The function

h(τ) =
∑
D≥0

TrD(j1)qD + g∗(τ)

has weight 1/2 for Γ0(4), i.e. it transforms like θ(τ).

The non holomorphic correction term g∗(τ) satisfy the
differential equation

2iy1/2 d
d τ̄

g∗(τ) = g(τ)

where g(τ) is Zagier’s function. Moreover h is harmonic.

∆1/2(h) = 0



What can we say about the individual ”values”
j(τQ) for D > 0?

Kaneko studied the numerical values of j(τQ) and made several
remarkable observations.

For a general quadratic irrationality,
among his many observations, we note the following
boundedness conjecture.

Conjecture (M. Kaneko)
Let w ∈ Q(

√
D) be a real quadratic irrationality. Then

Re(jnor (w)) ∈ [706.324 . . . ,744] and Im(jnor (w)) ∈ (−1,1)

where

706.324 . . . = jnor (
(1 +

√
5)

2
), and jnor (w) :=

√
D

2 log ε
j(w).
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Every x ∈ R has a unique ‘–’ continued fraction expansion
x = (b0,b1,b2, . . .) with bi ∈ Z, bi ≥ 2 for i ≥ 1

x = (b0,b1,b2, . . .) = b0 −
1

b1 −
1

b2 −
1
. . .

and a unique ‘+’ continued fraction expansion
x = [a0,a1,a2, . . .] with ai ∈ Z and ai ≥ 1 for i ≥ 1.

x = [a0,a1,a2, . . .] = a0 +
1

a1 +
1

a2 +
1
. . .

.



w is a quadratic irrationality if and only if its ‘–’ continued
fraction expansion (or equivalently, its ‘+’ continued fraction) is
eventually periodic.
For N ≥ 2, we have

w =
N +

√
N2 − 4
2

= (N,N,N . . .) = (N)

For the golden ratio we have

w =
1 +
√

5
2

= (2,3,3,3,3 · · · ) = (2, 3̄)

w =
1 +
√

5
2

= [1,1,1, . . .] = [1̄] = [1̄2]



Theorem (Bengoechea, I.)
Let w be a real quadratic number with purely periodic negative
continued fraction w = (b1, . . . ,bn). Then we have

1 Re(jnor (w)) ≤ 744.

2 For any positive integer N > 2, the value jnor ((N)) for the
quadratic number w = (N̄) is real and

lim
N→∞

jnor ((N)) = 744.

3 Let (1 +
√

5)/2 = (2, 3̄) be the golden ratio. If all the partial
quotients br of w satisfy br > 3M with M = e55 then

Re(jnor (w)) ≥ jnor ((1 +
√

5)/2).



The generating function of Trd(jm), m = 0,1, . . .

Let

Fd (τ) := −
∞∑

m=0

Trd (jm)qm.

Then we have

Theorem (Duke-I-Toth)
For each d > 0 not a square the function Fd is a holomorphic
modular integral of weight 2 with a rational period function:

Fd (τ)− τ−2Fd (−1/τ) = −
√

d
π

∑
c<0<a

b2−4ac=d

(aτ2 + bτ + c)−1. (0.3)



• Note that the period function has simple poles at certain
real quadratic integers of discriminant d .
• This is the analog of a theorem of Borcherds who defined a

function Fd which has singularities at CM points when
d < 0.
• The appearance of a rational period function is perhaps

not too surprising in view of the case d = 0.

τ−2E2(−1/τ) = E2(τ) + (2πi τ)−1. (0.4)



• We can also define a function FQ(τ) associated to one
class in [Q] ∈ Γ\Qd .

FQ(τ) := −
∞∑

m=0

aQ(m)qm

where
aQ(m) :=

√
d
ˆ

CQ

jm(z) dz
Q(z,1) .

• FQ(τ) is again a modular integral with a rational period
function.
• FQ(τ) has an interesting application to topology.



An application to Topology

• Let V = {(z,w) ∈ C2 : z3 − 27w2 = 0}, and T = V ∩ S3,
the trefoil knot.

• A remarkable fact: The homogeneous space

SL(2,Z)\ SL(2,R)

is diffeomorphic to S3 − T , the complement of the trefoil
knot in the 3-sphere.
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An application to Topology

E2(τ) =
1

2πi
∆′(τ)

∆(τ)
= 1− 24

∑
σ(n)qn

Dedekind studied the transformation law for the logarithm of

∆(τ) = q
∏
m≥1

(1− qn)24

For any γ =
(

a b
c d

)
∈ Γ with c 6= 0 we have

log ∆(γτ)− log ∆(τ) = 6 log(−(cτ + d)2) + 2πiΦ(γ).

We set Φ(γ) = 0 if c = 0.
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Here Φ(γ) is the Dedekind Symbol

Φ(γ) =
a + d

c
− 12sign(c) · s(a, c),

s(a, c) is the Dedekind sum defined for gcd(a, c) = 1, c 6= 0 by

s(a, c) =

|c|−1∑
n=1

((n
c

))((na
c

))
.

((x)) = 0 if x ∈ Z and otherwise

((x)) = x − bxc − 1/2.



• The Rademacher Symbol Ψ(γ) is

Ψ(γ) = Φ(γ)− 3sign(c(a + d)).

• The Dedekind symbol Φ(γ) is not a conjugacy class
invariant but the Rademacher symbol Ψ(γ) is.

• For γ hyperbolic Ψ(γ) is the homogenization of the
Dedekind symbol Φ(γ),

Ψ(γ) = lim
n→∞

Φ(γn)

n

• E. Ghys gave the beautiful result that the linking number of
a “modular knot κγ” with the trefoil is given by the
Rademacher symbol Ψ(γ).
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• Let γ =
(

a b
c d

)
∈ Γ be a primitive hyperbolic element with an

eigenvalue ε > 1.

• Fix a M ∈ G = SL(2,R) so that

M−1γM =

(
ε 0
0 1/ε

)
.

• Consider the 1-parameter subgroup

ϕ(t) =

(
et 0
0 e−t

)
and the associated flow

G × R 7−→ G
(g, t) 7−→ gϕ(t)
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• There is an induced flow φt on Γ\G, called the geodesic
flow.

•
φt : Γg 7−→ Γgϕ(t).

• γ̃(t) = Mϕ(t) is a periodic orbit in Γ\G with period log ε.
i.e. γ̃(t + log ε) = γ̃(t) in Γ\G.

• This orbit depends only on the conjugacy class of γ.

• Periodic orbits of the geodesic flow correspond to
conjugacy classes of hyperbolic elements.
• These orbits are also related to classes of indefinite binary

quadratic forms



• There is an induced flow φt on Γ\G, called the geodesic
flow.
•

φt : Γg 7−→ Γgϕ(t).

• γ̃(t) = Mϕ(t) is a periodic orbit in Γ\G with period log ε.
i.e. γ̃(t + log ε) = γ̃(t) in Γ\G.

• This orbit depends only on the conjugacy class of γ.

• Periodic orbits of the geodesic flow correspond to
conjugacy classes of hyperbolic elements.
• These orbits are also related to classes of indefinite binary

quadratic forms



• There is an induced flow φt on Γ\G, called the geodesic
flow.
•

φt : Γg 7−→ Γgϕ(t).

• γ̃(t) = Mϕ(t) is a periodic orbit in Γ\G with period log ε.
i.e. γ̃(t + log ε) = γ̃(t) in Γ\G.

• This orbit depends only on the conjugacy class of γ.

• Periodic orbits of the geodesic flow correspond to
conjugacy classes of hyperbolic elements.
• These orbits are also related to classes of indefinite binary

quadratic forms



• There is an induced flow φt on Γ\G, called the geodesic
flow.
•

φt : Γg 7−→ Γgϕ(t).

• γ̃(t) = Mϕ(t) is a periodic orbit in Γ\G with period log ε.
i.e. γ̃(t + log ε) = γ̃(t) in Γ\G.
• This orbit depends only on the conjugacy class of γ.

• Periodic orbits of the geodesic flow correspond to
conjugacy classes of hyperbolic elements.
• These orbits are also related to classes of indefinite binary

quadratic forms



• There is an induced flow φt on Γ\G, called the geodesic
flow.
•

φt : Γg 7−→ Γgϕ(t).

• γ̃(t) = Mϕ(t) is a periodic orbit in Γ\G with period log ε.
i.e. γ̃(t + log ε) = γ̃(t) in Γ\G.
• This orbit depends only on the conjugacy class of γ.

• Periodic orbits of the geodesic flow correspond to
conjugacy classes of hyperbolic elements.

• These orbits are also related to classes of indefinite binary
quadratic forms



• There is an induced flow φt on Γ\G, called the geodesic
flow.
•

φt : Γg 7−→ Γgϕ(t).

• γ̃(t) = Mϕ(t) is a periodic orbit in Γ\G with period log ε.
i.e. γ̃(t + log ε) = γ̃(t) in Γ\G.
• This orbit depends only on the conjugacy class of γ.

• Periodic orbits of the geodesic flow correspond to
conjugacy classes of hyperbolic elements.
• These orbits are also related to classes of indefinite binary

quadratic forms



• Let Q(X ,Y ) = AX 2 + BXY + CY 2 be a quadratic forms of
discriminant D = B2 − 4AC,
• t ,u are the smallest positive solutions of Pell’s equation

t2 − Du2 = 4, and
•

σQ =

( t+Bu
2 Cu
−Au t−Bu

2

)
.

• The association Q 7→ σQ sets up a bijection between
elements of the class C of the quadratic form Q and the
conjugacy class of σQ, which by abuse of notation will also
be denoted by C.



The image of the periodic orbit γ̃(t) in S3 − T is a knot, κγ ,
called a modular knot.
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Suppose that two oriented knots K1 and K2 do not intersect,
and project them onto a plane in a generic way. These
projections need not be disjoint.

Linking number 1 Linking number -1
(Pictures by Jim.belk)
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Theorem (E. Ghys)
The linking number of the modular knot κγ and the trefoil is
given by the Rademacher symbol.

Lk(κγ ,T ) = Ψ(γ)



The Dedekind Symbol has other representations.
• For c 6= 0, let

R(γ, z) = 6 log(−(cz+d)2)+2πiΦ(γ) = log ∆(γτ)−log ∆(τ)

Then
Φ(γ) = 1

2π lim
y→∞

Im R(γ, iy).

• It also has a representation in terms of the special value of
an L− function associated to E2(z).

L(s,a/c) =
∑
n≥1

σ(n)e(a
c n)n−s



• At the end of his paper, Knots and Dynamics, E. Ghys
mentions the problem of interpreting the linking number
between two modular knots.

• We will look at this problem by giving an appropriate
generalization of the Dedekind symbol.
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• For an hyperbolic element σ ∈ C let

aC(m) =
√

D′
ˆ σz0

z0

jm(z) dz
Qσ(z) .

• Define for α ∈ Q the Dirichlet series

LC(s, α) =
∑
n≥1

aC(n)e(nα)n−s, (0.5)

• Then LC(s,a/c) converges for Re(s) > 9/4, has a
meromorphic continuation to s > 0 and is holomorphic at
s = 1.



• We define a new Dedekind symbol,
Dedekind symbol associate to the conjugacy class C,

ΦC(γ) := − 1
π2 Re LC(1, a

c ).

Then we have
• Theorem [DIT] ΦC(γ) is an integer.



• For simplicity we assume σ ∈ Cσ is conjugate to its inverse,
ie. σ ∼ σ−1. Then the modular knot κσ is null-homologous
in S3 − T . For two such knots κσ and κγ we have

Theorem (DIT)
Let

Ψσ(γ) = lim
n→∞

ΦCσ(γn)

n
.

Then the limit exists and

Ψσ(γ) = Lk(κγ , κσ).
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THANK YOU!


